
Optimal filters for detecting cosmic bubble collisions

J. D. McEwen,1, ∗ S. M. Feeney,1, † M. C. Johnson,2, ‡ and H. V. Peiris1, §

1Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K.
2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

(Dated: April 27, 2012)

A number of well-motivated extensions of the ΛCDM concordance cosmological model postulate
the existence of a population of sources embedded in the cosmic microwave background (CMB).
One such example is the signature of cosmic bubble collisions which arise in models of eternal
inflation. The most unambiguous way to test these scenarios is to evaluate the full posterior prob-
ability distribution of the global parameters defining the theory; however, a direct evaluation is
computationally impractical on large datasets, such as those obtained by the Wilkinson Microwave
Anisotropy Probe (WMAP) and Planck. A method to approximate the full posterior has been
developed recently, which requires as an input a set of candidate sources which are most likely to
give the largest contribution to the likelihood. In this article, we present an improved algorithm for
detecting candidate sources using optimal filters, and apply it to detect candidate bubble collision
signatures in WMAP 7-year observations. We show both theoretically and through simulations
that this algorithm provides an enhancement in sensitivity over previous methods by a factor of
approximately two. Moreover, no other filter-based approach can provide a superior enhancement
of these signatures. Applying our algorithm to WMAP 7-year observations, we detect eight new
candidate bubble collision signatures for follow-up analysis.

I. INTRODUCTION

Precision observations of the cosmic microwave back-
ground (CMB) provide the most accurate picture of the
early universe that is available currently. The standard
ΛCDM concordance cosmological model – which states
that we live in a universe composed mostly of dark en-
ergy and dark matter, whose structure was seeded by
adiabatic and very nearly Gaussian and scale-invariant
density perturbations – describes the statistics of tem-
perature fluctuations in the CMB extremely well [1, 2].
However, there are many theoretically well-motivated ex-
tensions of ΛCDM that predict detectable secondary sig-
nals in the CMB.

One example, which has been the subject of a num-
ber of recent studies [3–14], is the signature of cosmic
bubble collisions which arise in models of eternal infla-
tion (see Ref. [15] for a review). In the model of eter-
nal inflation, our observable universe is contained inside
one member of an ensemble of bubbles. Collisions be-
tween bubbles disturb the homogeneity and isotropy of
the very early universe, leaving possibly detectable im-
prints on the CMB. In the limit where the number of
detectable collisions on the CMB sky is relatively small,
the signature is a set of azimuthally-symmetric modula-
tions of the temperature [3, 4], varying as the cosine of
the angular distance from the collision centre [8], with
a size-distribution peaking at half-sky scales [11]. Other
examples of secondary signals arise in theories with topo-
logical defects such as cosmic strings (see e.g. Ref. [16]
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for a review) or textures [17]; a less exotic example is the
signature of clusters of galaxies produced by the Sunyaev-
Zel’dovich (SZ) effect [18].

In each of these examples, a population of sources is
hypothesized to exist on top of the background CMB,
the members of which have properties drawn from a cal-
culable probability distribution. The most unambigu-
ous way to test these scenarios is to utilize the most
general predictions for the population of sources on the
full-sky, and determine the posterior probability distribu-
tion over the global parameters defining the theory (such
as the total number of features expected, their intrinsic
amplitude, etc.). The enormous size of modern CMB
datasets, such as those obtained by the Wilkinson Mi-
crowave Anisotropy Probe [19] (WMAP) and those cur-
rently being obtained by the Planck satellite [20], provide
a unique challenge for such an analysis. Indeed, a direct
pixel-based evaluation of the posterior at full resolution
is computationally intractable.

Recently, however, Refs. [21, 22] outlined a method for
approximating the full posterior describing source pop-
ulations in the context of the bubble collision hypothe-
sis. The method is generalized to the detection of other
sources easily. This approach requires preprocessing of
the data to recover a set of candidate sources which
are most likely to give the largest contribution to the
likelihood. The preprocessing stage of this method is
thus crucial to its overall effectiveness. Candidate source
detection aims to minimize the number of false detec-
tions while remaining sensitive to a weak signal; a man-
ageable number of false detections is thus tolerated, as
the subsequent Bayesian processing step will discriminate
these from true signals. To detect candidate bubble col-
lision signatures, Refs. [21, 22] employ a suite of needlet
transforms [23, 24]. Needlets are a form of azimuthally-
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symmetric wavelet1 defined on the sphere, that render
the location and scale of candidate features simultane-
ously accessible2. While the effectiveness of needlets for
detecting candidate features has been demonstrated al-
ready [21, 22], needlets are generic and are not adapted to
the signal of interest; consequently, they are not optimal.
A better approach is to enhance the effectiveness of can-
didate detection by exploiting knowledge of the source
signature.

Optimal filters have found widespread application in
many branches of physics and signal processing for the
detection of compact objects embedded in a stochas-
tic background. In the context of astrophysics, the
matched filter has been applied to detect point sources
and SZ emission in CMB observations [26, 27]. Alterna-
tive optimal filters, such as the scale-adaptive filter, have
also been derived [28, 29] and applied to CMB observa-
tions [30]. In all of these cases, optimal filters are applied
to small patches of the sky, where a flat tangent plane
approximation of the celestial sphere in the region of in-
terest is made. To analyze full-sky CMB observations
these techniques must be extended from Euclidean space
to a spherical manifold. Optimal filter theory has been
extended to the sphere by Ref. [31] (and applied to detect
SZ emission [32]) for the case of azimuthally-symmetric
source signatures and by Ref. [33] for the general direc-
tional setting.

In this article we develop an alternative candidate
source detection algorithm using optimal filters. We fo-
cus on the problem of detecting the signatures of bubble
collisions in observations of the CMB, but our approach
generalizes to other sources and backgrounds trivially.
Since the angular scale of a typical bubble collision is
expected to be large [4, 11, 15], tangent plane approxi-
mations are not valid, and we instead consider optimal
filters defined on the sphere [31, 33]. We describe and
evaluate our new candidate source detection algorithm
in Sec. II and show it to be superior to the needlet ap-
proach considered previously [21, 22]. Finally, we apply
our algorithm to WMAP observations in Sec. III, result-
ing in the detection of a number of new candidate bubble
collision signatures in the WMAP 7-year data. Conclud-
ing remarks are made in Sec. IV.

II. OPTIMAL DETECTION OF CANDIDATE
BUBBLE COLLISIONS

Filter based approaches to enhance a signal in a back-
ground process are common due to their effectiveness
and efficiency. Indeed, a wavelet transform, such as

1 Note that Mexican needlets [24] are not formally wavelets since
exact synthesis is not possible, even in theory.

2 Needlets are in fact the azimuthally-symmetric restriction of ex-
act steerable wavelets defined on the sphere [25], which render
the orientation of directional features also accessible.

needlets, is merely a filtering operation with a carefully
constructed set of filter kernels (to allow the exact re-
construction of the original signal). In this section we
consider filters that provide the maximal enhancement
of the source signature in a given stochastic background.
The filters are optimal in the sense that no other filter
can yield a greater enhancement in the signal-to-noise ra-
tio (SNR) of the filtered field. Our optimal-filter-based
method is general: in this work, we focus on its appli-
cation to the problem of detecting signatures of bubble
collisions. Firstly, we define the signatures of the bubble
collision remnants that we search for. We then construct
and evaluate optimal filters for detecting candidate bub-
ble collision signatures when the size of the signature is
known, before describing an algorithm for detecting mul-
tiple candidate bubble collision signatures of unknown
and differing sizes.

A. Bubble collision signatures

Bubble collisions induce a modulative and additive
contribution to the temperature fluctuations of the
CMB [8], however the modulative component is second
order and may be safely ignored. The additive contribu-
tion induced in the CMB by a bubble collision is given
by the azimuthally-symmetric profile

∆Tb(θ, φ) = [c0 + c1 cos(θ)] s(θ; θcrit) ,

when centered on the North pole, where (θ, φ) ∈ S2 de-
note the spherical coordinates of the unit sphere S2, with
colatitude θ ∈ [0, π] and longitude φ ∈ [0, 2π), and c0
and c1 are free parameters (not to be confused with the
power spectrum monopole and dipole). A typical bub-
ble collision signature is illustrated in Fig. 1. Following
the parameterization of Refs. [21, 22], we describe the
bubble collision signature by its amplitude at its cen-
tre and at its causal boundary, given by z0 = c0 + c1
and zcrit = c0 + c1 cos(θcrit) respectively, and by its size
θcrit. We replace the discontinuous Heaviside step func-
tion of the bubble collision profile with a “Schwartz”
step function s(θ; θcrit) that is infinitely differentiable
but nevertheless exhibits a smooth but rapid transi-
tion to zero about θcrit. As theoretical work suggests
that the temperature discontinuity parameter should be
negligible [13, 14] (an observation that is supported by
the candidate bubble collision signatures detected previ-
ously [21, 22]), we restrict our attention to zcrit ∼ 0 µK.
Bubble collision signatures may occur at any position on
the sky (θ0, φ0) and at a range of sizes θcrit and am-
plitudes z0. We denote by ∆Ti the temperature contri-
bution induced by a candidate bubble collision i with
parameters {z0, θcrit, θ0, φ0}.
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FIG. 1. Panels (a) and (b) show the radial profile and 3D surface plot (lit from top-left, with specular highlight), re-
spectively, of a bubble collision signature with parameters {z0, θcrit, θ0, φ0} = {100 µK, 10◦, 0◦, 0◦} (throughout we consider
zcrit ∼ 0 µK). In panel (c) the power spectrum of the bubble collision signature (solid blue curve) is compared with the best-fit
WMAP7+BAO+H0 CMB power spectrum (red dashed curve). Matched filters for azimuthally symmetric templates promote
harmonic modes where the source template power spectrum is large and suppress modes where the CMB power spectrum is
large.

B. Optimal bubble collision filters

We define optimal filters to enhance the contributions
of compact sources embedded in a stochastic background,
focusing on the case of locating candidate bubble colli-
sion signatures in the CMB. Firstly, we discuss filter-
ing on the sphere in general, before defining the optimal
matched filter. We compute the matched filter for de-
tecting bubble collision signatures and compare the SNR
for the matched filter to alternatives, such as needlets
and the unfiltered field itself.

1. Filtering

Filtering on the sphere is the natural analogue of the
filtering operation in Euclidean space and is defined by
the projection of a function, such as the CMB temper-
ature fluctuations ∆T , onto rotated filter kernels. Con-
sequently, filtering on the sphere is defined through the
spherical convolution

FR(ρ) = 〈∆T , R(ρ)ΨR〉 (1)

=

∫

S2

dΩ(θ′, φ′) ∆T (θ′, φ′) [R(ρ)ΨR]∗(θ′, φ′) ,

where ΨR is the filter kernel at scale R, R is the ro-
tation operator describing a rotation by the Euler an-
gles ρ ∈ SO(3), 〈·, ·〉 denotes the inner product on the
sphere, ∗ denotes complex conjugation and dΩ(θ, φ) =
sin θ dθ dφ is the usual rotation-invariant measure on the
sphere. The filtering operation given by Eq. (1) is gen-
eral in the sense that directional filter kernels are con-
sidered. Since we are concerned with bubble collision
signatures, which are azimuthally-symmetric, we hence-
forth restrict our attention to azimuthally-symmetric fil-
ter kernels such that ΨR(θ, φ) = ΨR(θ). In this case, the

filter kernel is invariant under rotations about its own
axis of symmetry and the set of distinct rotations is re-
stricted from the rotation group SO(3) to the sphere S2,
i.e. ρ = (θ, φ) ∈ S2.

Just like in the Euclidean setting, filtering on the
sphere can be computed more efficiently in harmonic
space than through an evaluation of Eq. (1) by direct
quadrature. The CMB temperature fluctuations may be
represented by their expansion in the basis of spherical
harmonics Y`m, given by

∆T (θ, φ) =

∞∑

`=0

∑̀

m=−`

a`mY`m(θ, φ) , (2)

where the harmonic coefficients are given by the usual
projection onto the basis functions: a`m = 〈∆T , Y`m〉. In
practice, we consider a maximum band-limit `max, such
that the summation over ` in Eq. (2) may be truncated to
`max. Similarly, the filter kernel may be decomposed into
its spherical harmonic expansion, with coefficients given
by (ΨR)`m = 〈ΨR, Y`m〉. For an azimuthally-symmetric
kernel the filter coefficients are non-zero for harmonic
indices m = 0 only, i.e. (ΨR)`m = δm0(ΨR)`0, where
δij is the Kronecker delta symbol. In this setting, the
harmonic coefficients of the filtered field are given by

(FR)`m =

√
4π

2`+ 1
a`m (ΨR)

∗
`0 . (3)

Fast spherical harmonic transforms (e.g. Refs. [34–37])
may then be employed to reduce the complexity of filter-
ing with an azimuthally-symmetric kernel from O(`max

4)
to O(`max

3).3

3 Filtering with directional filter kernels can also be performed
more efficiently in harmonic space than in real space [38–40].
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The purpose of filtering the observed signal on the
sphere is to enhance source signatures relative to the
stochastic background; we thus require a quantitive mea-
sure of the effectiveness of filtering. We define the SNR
of the filtered field for scale R by the ratio of its mean
to its dispersion in the presence of a source located at
(θ0, φ0):

ΓR =
µR(θ0, φ0)

σR(θ0, φ0)
, (4)

where the mean and variance of the filtered field are de-
fined, respectively, by

µR(θ, φ) = E[FR(θ, φ)]

and

σ2
R(θ, φ) = E[|FR(θ, φ)|2]− µ2

R(θ, φ) .

2. Optimal filters

The observed CMB temperature fluctuations ∆T are
assumed to be comprised of a number of compact sources
∆Ti, such as bubble collision signatures, embedded in a
stochastic background noise process n:

∆T (θ, φ) =
∑

i

∆Ti(θ, φ) + n(θ, φ) .

We decompose the sources into their amplitude Ai and
normalized template profile τi by ∆Ti(θ, φ) = Ai τi(θ, φ);
for the case of bubble collision signatures we make the
association A = z0. The stochastic noise process n is as-
sumed to be zero-mean, isotropic and homogeneous and
is defined by its power spectrum:

E[n`mn
∗
`′m′ ] = C` δ``′ δmm′ ,

where n`m = 〈n, Y`m〉. The source population is the
signal of interest, hence the noise is comprised of primary
and secondary CMB anisotropies.

We filter the observed CMB temperature fluctuations
∆T with the aim of enhancing the source contributions
∆Ti relative to the background noise n. The matched
filter ΨMF

R is defined to maximize the SNR of the filtered
field given by Eq. (4), while ensuring that the ampli-
tude of the filtered field at the source position gives an
unbiased estimator of the source amplitude. Thus, the
matched filter defined on the sphere is recovered by solv-
ing the constrained optimization problem:

min
w.r.t.ΨR

σ2
R(θ0, φ0) such that µR(θ0, φ0) = A .

The resulting matched filter is given by [33]

(ΨMF
R )`m =

τ`m
α C`

, (5)

where

α =
∑

`m

C−1
` |τ`m|2

and (ΨMF
R )`m = 〈ΨMF

R , Y`m〉. Here and subsequently we

use the shorthand notation
∑
`m =

∑`max

`=0

∑`
m=−`. On

inspection of the filtering operation in harmonic space
given by Eq. (3), the matched filter given by Eq. (5)
is justified intuitively since the filter promotes harmonic
modes where the source template τ`m is large and sup-
presses modes where the noise power C` is large.

In Fig. 2 we plot the matched filters that are optimized
to bubble collision signatures of varying size embedded
in a CMB background defined by the ΛCDM power spec-
trum that best fits WMAP 7-year, baryon acoustic oscil-
lations and supernovae observations (hereafter we refer to
this spectrum as the best-fit WMAP7+BAO+H0 power
spectrum) [2]. Notice that on smaller scales the matched
filter contains a central broad hot region to enhance the
main bubble collision contribution, surrounded by hot
and cold rings to enhance the collision edge. However,
on larger scales notice that the matched filter contains
only the hot and cold rings that enhance the collision
edge. Since the CMB has more power on large scales,
the matched filters on large scales do not look for the
large-scale features of the bubble collision signature but
rather the transition region near the location where the
template goes to zero. Note that the transition region is
the best place to look even though the matched filter is
constructed for templates with zcrit ∼ 0 µK.

Alternative optimal filters have also been proposed,
such as the scale-adaptive filter, defined in Euclidean
space by Refs. [28, 29] and extended to the sphere by
Refs. [31, 33]. Like the matched filter, the scale-adaptive
filter minimizes the variance of the filtered field while still
providing an unbiased estimate of the source amplitude,
but it also imposes a local peak in the filtered field over
scale R. Since an additional constraint is imposed when
solving the optimization problem that defines the scale-
adaptive filter, the SNR for the scale-adaptive filter is
inevitably lower than that for the matched filter. How-
ever, in the case of (i) a scale-invariant background and
(ii) a template profile that changes size simply through a
scaling of θ, the peak in the scale-adaptive filter field can
help to find sources of unknown size. When criteria (i)
and (ii) hold, the scale-adaptive filter for a given source
size can be constructed by scaling the scale-adaptive fil-
ter for a source of a different size. A filter of incor-
rect size (since the underlying size of the source is un-
known), and scaled variants of it, may then be applied;
the peak imposed in scale when constructing the filter
can then be used to estimate the unknown source size.
However, neither criterion holds for the case of bubble
collision signatures embedded in the CMB. Furthermore,
although the scale-adaptive filter has been derived on the
sphere by Refs. [31, 33], small-angle approximations are
made in these derivations; hence the scale-adaptive fil-
ter constraints may break down for sources of very large
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size, such as the bubble collision signatures of interest.
Indeed, we have performed numerical experiments that
have shown this to be the case. Consequently, we do not
consider the scale-adaptive filter further. The problem of
detecting sources of unknown size is considered further
in Sec. II C.

3. Signal-to-noise ratio comparison

We compare the SNR for the matched filter, which
by definition is optimal, with the SNR for needlets and
the unfiltered field. For a arbitrary filter ΨR, such as
needlets, the SNR defined by Eq. (4) becomes

ΓΨ
R =

A
∑
`m τ`m(ΨR)

∗
`m√∑

`m C`
∣∣(ΨR)`m

∣∣2
,

where (ΨR)`m = 〈ΨR, Y`m〉. For the case of the matched
filter this expression reduces to [33]

ΓMF
R = α1/2 A .

Finally, we also consider the SNR of the unfiltered field,
defined by the ratio of its mean and dispersion at the
location of a source, given by

Γorig =
A
∑
`m

√
2`+1
4π

(`−m)!
(`+m)! τ`m√∑

`
2`+1
4π C`

.

The SNRs computed for bubble collision signatures of
varying size embedded in a CMB background defined by
the ΛCDM best-fit WMAP7+BAO+H0 power spectrum
are plotted in Fig. 3 (a). Notice the superiority of the
matched filter to both needlets and the original unfiltered
field.

C. Candidate bubble collision detection

We have selected the optimal matched filter as the filter
of choice, since the matched filter optimizes the SNR of
the filtered field at the position of a source, but thus far
we have only considered source profiles of known size.
Here we describe an algorithm using the matched filter
to detect multiple sources of unknown and differing size.
The algorithm proceeds as follows.

1. Construct matched filters optimized to the source

signatures for a grid of scales, i.e. R ∈ {θkcrit}
Nθcrit
k=1 .

2. Filter the sky with the matched filter for each scale
R.

3. Compute significance maps

SR(θ, φ) =
|FR(θ, φ)− µR(θ, φ)|

σR(θ, φ)
, (6)

for each filter scale R. The mean and dispersion
of the filtered field is computed over realisations of
the noise process in the absence of sources.

4. Threshold the significance maps for each filter scale
R, setting all values of SR(θ, φ) < NσR to zero.

5. Find localized peaks in the thresholded significance
maps for each filter scale R and associate each with
a potential detection of a source.

6. For each potential detection at a given scale R, look

across adjacent scales Radj ∈ {Radj ∈ {θkcrit}
Nθcrit
k=1 :

|Radj −R| ≤ θadj} and eliminate the potential de-
tection if a stronger potential detection is made on
an adjacent scale. Potential detections are elim-
inated as follows. If adjacent scales contain an
overlapping non-zero thresholded region, and if the
pixel with the maximum absolute value of the fil-
tered field in the thresholded region is the same
sign as the corresponding value at the current scale,
but greater in magnitude, then discard the poten-
tial detection at the current scale. Otherwise retain
the potential detection and classify it as a detected
source.

7. For all detected sources, estimate the parameters
of the source size, location and amplitude, using
the corresponding filter scale, peak position of the
thresholded significance map and amplitude of the
filtered field, respectively.

The construction of optimal filters is implemented in the
S2FIL code [33] (which in turn relies on the codes S2 [40]
and HEALPix [35]), while the COMB code [33] has been
used to simulate bubble collisions signatures embedded
in a CMB background.4 The candidate object detection
algorithm described here is implemented in a modified
version of S2FIL that will soon be made publicly avail-
able.

There is no theoretical guarantee that the peak in the
filtered field across scales will coincide with the scale of
the unknown source. Nevertheless, for bubble collision
signatures embedded in the CMB we have found, through
numerical simulations, that there is indeed such a peak at
the scale of an underlying source, as illustrated in Fig. 4.
Thus, the algorithm outlined above is an effective ap-
proach to detecting multiple bubble collision signatures
of unknown and differing size. In situations where a peak
does not occur at the scale of an underlying source, nu-
merical simulations may be performed to fit the curve
of the filtered field across scales to an underlying source
size. The algorithm outlined above would therefore re-
main applicable, with only minor alterations.

4 S2FIL, S2 and COMB are available from http://www.jasonmcewen.

org/, while HEALPix is available from http://healpix.jpl.nasa.

gov/.

http://www.jasonmcewen.org/
http://www.jasonmcewen.org/
http://healpix.jpl.nasa.gov/
http://healpix.jpl.nasa.gov/
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(a)θcrit = 5◦ (b)θcrit = 10◦ (c)θcrit = 20◦

(d)θcrit = 30◦ (e)θcrit = 60◦ (f)θcrit = 90◦

FIG. 2. Matched filters optimized to bubble collision signatures of varying size embedded in a ΛCDM CMB background defined
by the best-fit WMAP7+BAO+H0 power spectrum.

Although this algorithm considers a grid of candidate

scales R ∈ {θkcrit}
Nθcrit
k=1 , it is likely that a source may exist

at scales between the samples of the grid. It is thus im-
portant to examine how sensitive the matched filter is to
small errors in the source size. In Fig. 3 (b) we plot SNR
curves for matched filters constructed on the grid of can-
didate scales for bubble collision signatures embedded in
the CMB. A degradation in the SNR away from the scale
used to construct each filter is clearly apparent; however,
provided that the θcrit grid is sampled sufficiently densely,
the matched filters remain effective and are superior to
needlets.

The algorithm described above has just two parame-
ters. The first is the distance θadj for which scales are
considered to be adjacent, which can be set relative to
the grid of candidate sizes. The second parameter is the
threshold level NσR , which may be allowed to vary for
each filter scale R. The threshold levels may be cali-
brated from simulations in order to allow a manageable
number of false detections, while remaining sensitive to
weak source signals.

III. BUBBLE COLLISION CANDIDATES IN
WMAP 7-YEAR OBSERVATIONS

In this section we apply the optimal-filter-based source
detection algorithm described in Sec. II to WMAP 7-year
observations of the CMB to search for signatures of
bubble collisions. Firstly, we construct optimal filters
matched to WMAP observations and then calibrate the
detection algorithm on a realistic WMAP end-to-end
simulation. We then study the sensitivity of the optimal-
filter-based detection algorithm. Finally, we apply the
algorithm to WMAP observations, resulting in the de-
tection of a number of new candidate bubble collision
signatures.

A. Optimal bubble collision filters for WMAP

We analyze foreground-cleaned WMAP 7-year W-band
observations since this band has the highest resolution
beam (with full-width-half-maximum FWHM = 13.2 ar-
cmin) and suffers from the least foreground contami-
nation [41]. We restrict our analysis to the band-limit
`max = 256 since this is sufficient to represent the bub-
ble collision signatures of interest, which are relatively
large scale. The stochastic background in which the bub-
ble collision signatures live, and that is used to derive
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FIG. 3. SNRs of bubble collision signatures of varying size
with amplitude A = z0 = 100 µK embedded in a ΛCDM
CMB background defined by the best-fit WMAP7+BAO+H0
power spectrum. SNR curves are plotted for matched filters
(solid blue curve), needlets with scaling parameter B = 1.8
for a range of needlet scales j (dot-dashed black curves) and
for the unfiltered field (dashed red curve). Notice the clear
superiority of the matched filter. In panel (b) SNR curves for
the matched filters constructed at a given scale and applied at
all other scales are also shown (light solid blue curves). The
scale for which the filters are constructed may be read off the
plot from the intersection of the heavy and light solid blue
curves. Provided the θcrit grid is sampled sufficiently densely,
the matched filters remain superior to needlets.

matched filters, is defined by the CMB power spectrum,
where we assume the best-fit WMAP7+BAO+H0 best-
fit ΛCDM power spectrum. The noise considered in the
derivation of the matched filter is assumed to be homoge-
nous and isotropic, whereas WMAP observations exhibit
anisotropic noise that varies over the sky. We therefore
neglect WMAP noise when constructing optimal filters.
This approximation is valid since the W-band instrumen-
tal noise is subdominant relative to the CMB contribu-
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FIG. 4. Amplitude of the filtered field at the position of
a bubble collision signature versus the scale used to con-
struct the corresponding matched filter. The underlying
bubble collision signature has parameters {z0, θcrit, θ0, φ0} =
{100 µK, 20◦, 0◦, 0◦} and is embedded in a ΛCDM CMB back-
ground defined by the best-fit WMAP7+BAO+H0 power
spectrum. The solid curve shows the mean value obtained
over 100 CMB realizations, while the error bars show the cor-
responding standard deviation. Notice that a peak is clearly
visible at the scale of the underlying bubble collision signa-
ture. Furthermore, the amplitude of the filtered field at the
source scale gives an unbiased estimate of the collision am-
plitude, as imposed through the construction of the matched
filter.

tion in the harmonic region of interest (`max ≤ 256).5

The optimal filters matched to WMAP W-band ob-
servations are then computed by Eq. (5), where the
noise power spectrum C` is given by the CMB spec-
trum, and the harmonic coefficients of the normalized
template profile τ`m are modulated by the Legendre coef-
ficients of an azimuthally-symmetric Gaussian beam with
FWHM = 13.2 arcmin. The matched filters computed in
this setting are very similar to those displayed in Fig. 2,
that were computed in the absence of a beam.6

For the algorithm to detect candidate bubble colli-
sion signatures of unknown and varying size described in
Sec. II C, we must construct matched filters for a grid of
scales. We consider the scales R ∈ { 1◦, 1.5◦, 2◦, 3◦, 4◦,
5◦, 6◦, 7◦, 8◦, 9◦, 10◦, 12◦, 14◦, 16◦, 18◦, 20◦, 22◦, 24◦,
26◦, 28◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦, 65◦, 70◦, 75◦,
80◦, 85◦, 90◦}. The SNR curves for the matched filters
constructed for these scales are shown in Fig. 3 (b) (al-
beit in the absence of a beam, although the SNR curves

5 We have tested the validity of this assumption by successfully
detecting synthetic bubble collision signatures embedded in sim-
ulated WMAP observations that do include anisotropic noise.

6 The Gaussian beam employed in this work is an approximation
to the true W-band beam [41]. As the matched filters computed
in the absence of a beam are very similar to those computed with
a Gaussian beam, any effects due to the approximated beam are
negligible.
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do not change markedly when these effects are included).
This grid of scales is thus sufficiently sampled to ensure
that the matched filters remain effective for scales be-
tween the samples of the grid.

B. Calibration

It is necessary to calibrate the optimal-filter-based
bubble collision detection algorithm to realistic WMAP
observations. Throughout the calibration we apply the
WMAP KQ75 mask [42] since we will adopt this conser-
vative mask when analyzing the WMAP data. Firstly, for
each scale R, we use 3,000 Gaussian CMB WMAP simu-
lations with W-band beam and anisotropic instrumental
noise to compute the mean and dispersion of the filtered
field in the absence of sources, as required to compute
significance maps of each filtered field through Eq. (6).
Based on the sampling of the grid of scales we set the
adjacency parameter to θadj = 5◦. We then calibrate
the threshold levels NσR for each scale R from a realistic
WMAP simulation that does not contain bubble collision
signatures. The thresholds are chosen to allow a manage-
able number of false detections while remaining sensitive
to weak bubble collision signatures. For this calibration
we use a complete end-to-end simulation of the WMAP
experiment provided by the WMAP Science Team [42].
The temperature maps in this simulation are produced
from a simulated time-ordered data stream, which is pro-
cessed using the same algorithm as the actual data. The
data for each frequency band is obtained separately from
simulated sources including diffuse Galactic foregrounds,
CMB fluctuations, realistic noise, smearing from finite in-
tegration time, finite beam size, and other instrumental
effects. We use the foreground-reduced W-band simu-
lation for calibration. The threshold levels NσR are se-
lected to allow at most two false detections on each scale
on this simulated map (recall that detections on one scale
can be eliminated by stronger detections made on adja-
cent scales). When running the fully-calibrated candi-
date bubble collision detection algorithm on the WMAP
W-band end-to-end simulation, 13 false detections are
made (note that this is an identical number of false de-
tections to that obtained using needlets [21, 22]). Pro-
cessing a single map through the algorithm, including
filtering at all 33 scales, requires on the order of seconds
on a standard desktop computer.

C. Sensitivity

Before applying the calibrated candidate bubble colli-
sion detection algorithm to WMAP observations, we first
assess its sensitivity by applying it to simulated observa-
tions where bubble collision signatures are present. We
repeat the sensitivity analysis performed by Refs. [21, 22],
where we lay down known bubble collision signatures
on low-noise and high-noise regions of the sky, given

by locations (θ0, φ0) = (57.7◦, 99.2◦) and (θ0, φ0) =
(56.6◦, 193.0◦) respectively, where throughout we use
Galactic coordinates. For each collision scale and ampli-
tude that we consider, in each of the low-noise and high-
noise regions, we simulate three Gaussian CMB WMAP
W-band observations. We then run the calibrated bubble
collision detection algorithm on these six simulations. If
the underlying bubble collision signature is detected in
all simulations, we classify the amplitude and scale pa-
rameter pair as living in an exclusion region. If the un-
derlying bubble collision is detected in some but not all
simulations, we classify the parameter pair as living in
a sensitivity region. If the underlying bubble collision is
not detected in any simulation, we classify the parame-
ter pair as living in an unprobed region. These regions
describe the sensitivity of the bubble collision detection
algorithm and are plotted in Fig. 5 for a range of scale
and amplitude parameter pairs.

Bubble collision signatures that lie in exclusion regions
would certainly be detected by the optimal-filter-based
bubble collision detection algorithm provided they were
not significantly masked, while collision signatures that
lie in sensitivity regions would be detected if they were in
a favorable location on the sky. When compared to the
exclusion and sensitivity regions recovered using needlets
[21, 22], the regions recovered using optimal filters are ex-
tended to lower temperatures by a factor of ∼ 1.7 in ∆T
for scales θcrit ∼ 10◦ and most likely further for larger
scales (note that the regions plotted in [21, 22] are for
∆T/T0, where T0 is the average temperature of the CMB,
while here they are plotted for ∆T ). Optimal filters thus
provide an enhancement in sensitivity by a factor of ap-
proximately two when compared with needlets, in line
with expectations from the SNR curves plotted in Fig. 3.
This improvement in sensitivity will be important for un-
covering the necessarily weak bubble collision signatures
that may be embedded in CMB observations.

D. Candidate bubble collisions

The calibrated bubble collision detection algorithm is
applied to foreground-cleaned WMAP 7-year W-band
observations [41], with the conservative KQ75 mask ap-
plied [42]. Sixteen candidate bubble collision signatures
are detected. The WMAP W-band data that are ana-
lyzed and the detected bubble collision candidates are
plotted on the full-sky in Fig. 6. A list of the parameters
recovered for each detected candidate is given in Table I,
where the bubble collision candidate labels match those
of Fig. 6 (c). In Table I we also give the significance level
of each detection and state whether a feature with simi-
lar parameters was detected using needlets [21, 22]. We
detect eight new candidate bubble collisions that have
not been reported previously.

As a very preliminary analysis to check that resid-
ual foreground contributions are not responsible for
the detected candidate bubble collision signatures, we
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FIG. 5. Exclusion (black) and sensitivity (grey) regions for
the optimal-filter-based bubble collision detection algorithm.
Bubble collision signatures that lie in exclusions regions would
certainly be detected by the algorithm provided they were not
significantly masked, while collision signatures that lie in sen-
sitivity regions would be detected if they were in a favorable
location on the sky.

also apply the bubble collision detection algorithm to
the foreground-cleaned V-band and Q-band WMAP
7-year observations. Since foreground contributions are
frequency-dependent, one would expect a large difference
between the regions detected on different bands if they
were due to foreground contributions. Whether each can-
didate bubble collision signature is detected in the other
WMAP bands is listed in the final two columns of Ta-
ble I. All of the new regions detected in the W-band are
detected in at least one of the other bands, suggesting
residual foregrounds are unlikely to be responsible for
the new bubble collision candidates that we detect.

Let us remark that the combination of bubble colli-
sion candidates with labels 14 and 15 look somewhat
like a dipole contribution. However, this resemblance
is likely to be a coincidence: we know that the matched
filters on these large scales enhance ring-like features (see
Fig. 2). Indeed, since the prior on the expected angular
size of bubble collision signatures in the CMB is peaked
at 90◦ [11], very large candidate bubble collisions are
of particular interest. A subsequent Bayesian analysis,
following the method of Refs. [21, 22], will be able to
discriminate whether these features are spurious ΛCDM
fluctuations, or else provide evidence for the bubble col-
lision hypothesis.

IV. CONCLUSIONS

The problem of detecting the existence of a popula-
tion of sources embedded in the CMB is of widespread
interest. The most unambiguous method of doing so is
through a direct evaluation of the full posterior probabil-
ity distribution of the global parameters of the theory giv-

(a)WMAP 7-year W-band observations

(b)Candidate bubble collision signatures

(c)Labelled candidate bubble collision signatures

FIG. 6. WMAP data analyzed by the bubble collision detec-
tion algorithm and the resulting candidate bubble collision
signatures detected (in units of mK). In panels (a) and (b)
the conservative KQ75 mask is applied. Full-sky maps are
plotted using the Mollweide projection.

ing rise to the source population. However, such an ap-
proach is computationally impractical for large datasets,
such as WMAP and Planck. A method to approxi-
mate the full posterior has been developed recently by
Refs. [21, 22]. This approach requires preprocessing of
the data to recover a set of candidate sources which are
most likely to give the largest contribution to the like-
lihood. The preprocessing stage of this method is thus
crucial to its overall effectiveness. Previously needlets
were used for candidate source detection [21, 22]. In this
article we have developed a new algorithm, based on opti-
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TABLE I. Candidate bubble collisions detected in WMAP 7-year W-band observations.

Label Bubble collision parameters Sθcrit(θ0, φ0) Detected previously Detected in other bands

z0 (mK) θ0 (◦) φ0 (◦) θcrit (◦) V-band Q-band

0 0.24 119.0 304.5 1.5 4.25 N Y N

1 0.20 78.3 176.5 2 4.15 N N Y

2 0.20 112.3 264.4 2 4.08 Y Y Y

3 -0.19 145.1 33.0 2 4.05 Y N N

4 -0.17 169.0 187.5 3 4.26 Y Y Y

5 0.17 72.4 150.8 3 4.02 Y Y Y

6 -0.16 167.2 268.7 4 4.56 Y Y Y

7 -0.16 147.4 207.1 5 4.67 Y Y Y

8 0.15 123.2 321.3 5 4.43 Y Y Y

9 0.14 62.7 220.4 7 4.39 N Y Y

10 0.11 136.6 172.6 20 3.94 Y Y Y

11 -0.09 127.2 216.9 26 3.07 N N Y

12 0.09 116.3 31.6 35 3.33 N Y N

13 0.10 136.6 282.0 40 3.07 N N Y

14 0.15 69.6 62.6 85 3.03 N Y N

15 -0.16 88.5 277.7 90 3.11 N Y Y

mal filtering, to detect candidate sources of unknown and
differing angular sizes embedded in full-sky observations
of the CMB.

This method is optimal in the sense that no other filter-
based approach can provide a superior enhancement of
the source contribution. However, as we have empha-
sized, the parameters of our algorithm are set to allow
some false detections: there is no guarantee that the can-
didates picked out are the signatures of bubble collisions.
The filters will also respond to similar temperature pat-
terns resulting from rare ΛCDM fluctuations. A further
Bayesian model selection step (implementing Occam’s ra-
zor via a self-consistent penalty for extra model parame-
ters) is required to determine the most likely explanation
for the data – be it a bubble collision, a rare statistical
fluctuation of ΛCDM or something else entirely.

Although our source detection algorithm has general
applicability, in this case we have applied it to the prob-
lem of detecting candidate bubble collision signatures
in WMAP 7-year observations, where we have demon-
strated its superiority. After calibrating our algorithm
on a realistic WMAP end-to-end simulation, we have
shown both theoretically and through simulations that it
provides an enhancement in sensitivity over the previous
needlet approach by a factor of approximately two, for an
identical number of false detections on the WMAP end-
to-end simulation. Applying our algorithm to WMAP
7-year observations, we detect eight candidate bubble col-
lision signatures that have not been reported previously.

In a follow-up analysis, we intend to compute the full
posterior probability distribution of the number of bub-
ble collision signatures in WMAP data using the method
developed by Refs. [21, 22], in light of these new candi-
date bubble collision signatures. However, this method

was previously restricted to candidate collisions of size
θcrit ≤ 11◦ due to computational memory requirements,
while we have detected a number of candidate bubble
collision signatures at larger scales. To handle these
large candidate bubble collision signatures, an adaptive-
resolution refinement of the method has been developed
which processes each candidate at the highest resolution
possible given its size and the available computational re-
sources. It was previously shown that the WMAP 7-year
data do not warrant augmenting ΛCDM with bubble col-
lisions [21, 22]. However, the enhanced sensitivity of
our optimal-filter-based candidate collision detection al-
gorithm will improve the accuracy of the approximated
posterior distribution, and has the potential to uncover
evidence for bubble collisions in WMAP observations of
the CMB, as well as in next-generation datasets.
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