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A novel sampling theorem on the sphere
Jason D. McEwen and Yves Wiaux

Abstract— We develop a novel sampling theorem on the sphere
and corresponding fast algorithms by associating the sphere
with the torus through a periodic extension. The fundamental
property of any sampling theorem is the number of samples
required to represent a band-limited signal. To represent exactly
a signal on the sphere band-limited at L, all sampling theorems
on the sphere require O(L2) samples. However, our sampling
theorem requires less than half the number of samples of
other equiangular sampling theorems on the sphere and an
asymptotically identical, but smaller, number of samples than
the Gauss-Legendre sampling theorem. The complexity of our
algorithms scale as O(L3), however, the continual use of fast
Fourier transforms reduces the constant prefactor associated with
the asymptotic scaling considerably, resulting in algorithms that
are fast. Furthermore, we do not require any precomputation
and our algorithms apply to both scalar and spin functions
on the sphere without any change in computational complexity
or computation time. We make our implementation of these
algorithms available publicly and perform numerical experiments
demonstrating their speed and accuracy up to very high band-
limits. Finally, we highlight the advantages of our sampling
theorem in the context of potential applications, notably in the
field of compressive sampling.

Index Terms— Harmonic analysis, sampling methods, spheres.

I. INTRODUCTION

IN many fields of science and engineering data are measured
on a spherical manifold. Applications where data are de-

fined inherently on the sphere are found in computer graphics
(e.g. [1]), planetary science (e.g. [2]–[5]), geophysics (e.g.
[6]–[8]), quantum chemistry (e.g. [9], [10]) and astrophysics
(e.g. [11], [12]), to quote only a few. In many of these
applications a harmonic analysis of the data is insightful. For
example, spherical harmonic analyses have been remarkably
successful in cosmology over the past decade, leading to the
emergence of a standard cosmological model. Observations of
the anisotropies of the cosmic microwave background (CMB),
which are made on the celestial sphere, contain a wealth of
information about the early Universe. Cosmologists extract this
information from the angular power spectrum of observations
of the CMB, computed through a harmonic transform on the
sphere (e.g. [13]). Recent and upcoming full-sky observations
of the CMB are of considerable size, containing approximately
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three [12] and fifty [14] million samples respectively. Fur-
thermore, observations are made of both the temperature and
polarisation of the CMB, which give rise to scalar and spin ±2
functions on the sphere respectively. Consequently, the ability
to perform fast scalar and spin spherical harmonic transforms
on large data sets is of considerable importance in cosmology
and beyond.

Algorithms to perform spherical harmonic transforms have
received considerable attention already. Some correspond to
sampling theorems on the sphere, where the forward and
inverse transform are theoretically exact for a band-limited
signal on the sphere. Others adopt approximate quadrature
rules on the sphere, resulting in approximate harmonic trans-
forms that do not correspond to sampling theorems on the
sphere. However, these approximate algorithms typically arise
from particular pixelisations of the sphere which meet de-
sirable practical criteria, such as pixels of equal area, and
are no less important. We focus here on approaches that
lead to sampling theorems on the sphere with theoretically
exact transforms for signals on the sphere band-limited at
L (where the harmonic band-limit L is defined formally in
Sec. III-B). Note that the current [12] and forthcoming [14]
CMB observations discussed previously support band-limits
of L = 1024 and L = 4096 respectively. All sampling
theorems require N samples on the sphere of order O(L2),
however the exact number of samples required varies for each
sampling theorem. For many applications reducing the number
of samples required to represent a band-limited signal on the
sphere is of fundamental importance.

Sampling theorems on the sphere and their associated
numerical algorithms are evaluated by four criteria: (i) the
number of samples required to represent a band-limited signal
exactly; (ii) their computational complexity; (iii) their speed;
and (iv) issues surrounding any precomputation. From an
information theoretic viewpoint, the fundamental property of
any sampling theorem is the number of samples required
to represent a band-limited signal exactly. In this article we
review algorithms to compute spherical harmonic transforms
accurately and efficiently. We also present a novel sampling
theorem on the sphere and corresponding fast algorithms.
Our approach compares favourably to the state-of-the-art as
evaluated by the four criteria listed previously. Furthermore,
our algorithms apply to both scalar and spin functions on
the sphere without any change in asymptotic complexity or
computation time.

The remainder of this article is structured as follows. In
Sec. II we review comprehensively the literature regarding
the computation of spherical harmonic transforms, placing our
novel sampling theorem and fast algorithms in the context of
preceding work. Harmonic analysis on the sphere is reviewed
concisely in Sec. III, to present the mathematical preliminaries
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required subsequently. Our sampling theorem on the sphere
and the corresponding fast algorithms to compute spherical
harmonic transforms are derived in Sec. IV. In Sec. V we
evaluate our algorithms numerically and discuss the advan-
tages of our sampling theorem in the context of potential
applications, notably in the field of compressive sampling.
Concluding remarks are made in Sec. VI.

II. REVIEW

The development of sampling theorems on the sphere and
fast algorithms to compute spherical harmonic transforms has
been driven largely by researchers in the fields of computa-
tional harmonic analysis, geophysics and astrophysics. Due
to the diverse nature of these fields, the literature on this
topic appears to be somewhat disjoint. We attempt to unify
these works here and to present a comprehensive review of
the historical development of the field.

For isolatitude sampling schemes, where the samples are
gathered in isolatitude annuli, a separation of variables may be
performed to rewrite the scalar spherical harmonic transform
as a Fourier transform in longitude and an associated Legendre
transform in colatitude. The computation is then dominated by
the associated Legendre transform, reducing the complexity
from O(L4) to O(L3). Isolatitude samplings are thus very
common and hence we restrict our attention to such schemes.
Spin lowering and raising operators can be used to relate
the harmonic transform of spin functions to the scalar case,
hence scalar transforms have received the majority of attention.
Approaches to improve the computational performance of
scalar spherical harmonic transforms attempt either to reduce
the asymptotic complexity further through fast associated Leg-
endre transforms or to reduce the constant prefactor associated
with the asymptotic scaling of the algorithm.

First attempts to compute a scalar spherical harmonic trans-
form through a fast Legendre transform were performed by
Orszag [15] and were based on a Wentzel-Kramers-Brillouin
(WKB) approximation. Alternative approaches using the fast
multipole method (FMM) [16] have been considered by Alpert
& Rokhin [17] and by Suda & Takani [18]. The complexity
of these algorithms scale linearly with the desired accuracy.
An alternative approximate algorithm using WKB frequency
estimates has been developed by Mohlenkamp [19], [20] for
functions with band-limits that are a power of two, however
this approximation can be controlled independently of com-
plexity, which scales as O(L2 log 2

2L). In any case, these types
of approach are necessarily approximate and do not yield exact
sampling theorems on the sphere.

Other approximate approaches based solely on the sepa-
ration of variables have been developed more recently for
pixelisations of the sphere that satisfy certain practical require-
ments, such as HEALPix1 [21] and IGLOO2 [22], resulting
in algorithms of complexity O(L3). For these pixelisations
only approximate quadrature rules exist, hence the spherical
harmonic transform algorithms of HEALPix and IGLOO
are not theoretically exact. Nevertheless, these pixelisation

1http://healpix.jpl.nasa.gov/
2http://www.mrao.cam.ac.uk/projects/cpac/igloo/

schemes satisfy a number of desirable practical criteria, such
as pixels of equal area, and their associated harmonic trans-
form algorithms are of sufficient accuracy for many practical
purposes. These schemes have found considerable application
in the analysis of CMB data.

Exact transforms with associated sampling theorems have
been constructed for particular pixelisation schemes. It is
well-known that Gauss-Legendre quadrature may be used to
construct exact spherical harmonic transforms. To our knowl-
edge, this result was first highlighted in published work by
Shukowsky [23], which in turn refers to unpublished (and in-
accessible) work by Payne from 1971 [24]. An exact sampling
theorem can be constructed from NGL = L(2L− 1) ∼ 2L2

samples on the sphere, where the sample locations in colati-
tude are chosen as the roots of the Legendre polynomials of
order L, as dictated by Gauss-Legendre quadrature. Through a
separation of variables, the resulting algorithm is O(L3). The
GLESP3 [25] pixelisation scheme has been constructed using
Gauss-Legendre quadrature, however this scheme uses twice
as many samples in colatitude as required, i.e. approximately
2NGL ∼ 4L2 samples are used. GLESP has also found
considerable application in the analysis of CMB data.

The first theoretically exact sampling theorem on an equian-
gular pixelisation was developed by Shukowsky [23], requiring
NS = (2L− 1)2 ∼ 4L2 samples on the sphere; however, the
exactness of this approach was not studied numerically. Al-
though this algorithm remains O(L4), a separation of variables
may be used to reduce the computational complexity to
O(L3). An alternative sampling theorem on the sphere for an
equiangular pixelisation was developed by Driscoll and Healy
[26]. Moreover, a divide-and-conquer approach to computing
a fast associated Legendre transform in the cosine basis was
derived [26]. The resulting algorithm is exact in exact precision
arithmetic, and has computational complexity O(L2 log 2

2L),
but is known to suffer from stability problems [27], [28].
Healy et al. [27] readdressed the work of Driscoll & Healy
[26], reformulating the sampling theorem on the sphere and
developing some variants of the original algorithm,4 which
are available for download.5 However, the only variant that is
universally stable is the so-called semi-naive algorithm, which
remains O(L3). Algorithms to compute spin ±2 transforms
are derived by Wiaux et al. [29] and Kostelec et al. [30] using
spin raising and lowering operators to relate spin transforms

3http://www.glesp.nbi.dk/
4 Healy et al. [27] derive a number of variants of the original Driscoll

& Healy algorithm [26], including the so-called semi-naive, simple-split and
hybrid algorithms. The semi-naive algorithm avoids dividing (and conquering)
the problem, resulting in O(L3) complexity. The simple-split algorithm is
a simpler and more stable divide-and-conquer approach than the original
algorithm but with an increased complexity of O(L5/2 log

1/2
2 L) and is less

stable than the semi-naive approach. The splitting required by the simple-
split algorithm is costly (in terms of execution time rather than asymptotic
complexity), thus for a band-limit of L = 1024 the semi-naive algorithm
is greater than two times faster than the simple-split algorithm [27]. The
hybrid algorithm attempts to mitigate the slow execution of the simple-spit
algorithm and the higher complexity of the semi-naive algorithm by splitting
the problem between them. The hybrid algorithm appears to achieve a good
compromise between stability and efficiency. However, the overall complexity
of this algorithm is not clear since it depends on the split between the semi-
naive and simple-split algorithms and on user specified parameters.

5http://www.cs.dartmouth.edu/˜geelong/sphere/

http://healpix.jpl.nasa.gov/
http://www.mrao.cam.ac.uk/projects/cpac/igloo/
http://www.glesp.nbi.dk/
http://www.cs.dartmouth.edu/~geelong/sphere/
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to the scalar case, before applying the scalar algorithms de-
veloped by Healy et al. [27]. In general, this type of approach
may be used to compute spin transforms for arbitrary spin
[31], however the complexity of the resulting algorithm then
also scales linearly with spin number. All of these algorithms
[26], [27], [29], [31], [32] require NDH = 2L(2L− 1) ∼ 4L2

samples on the sphere and, moreover, the divide-and-conquer
based approaches are all restricted to harmonic band-limits that
are a power of two. Furthermore, all of the methods with com-
plexity below O(L3) require a precomputation that requires
O(L3) computations and storage. At band-limit L = 1024, for
example, the precomputation requires 1.2GB of storage [29],
scaling to approximately 77GB for the band-limit L = 4096
of forthcoming CMB observations. Precomputation quickly
becomes infeasible for high band-limits, thus the O(L3) semi-
naive algorithm is the most universally applicable fast algo-
rithm implementing the Driscoll & Healy sampling theorem.

Other approaches to reduce the cost of computing spherical
harmonic transforms focus on reducing the constant prefac-
tor associated with the asymptotic complexity of algorithms.
These approaches have typically exploited fast Fourier trans-
forms (FFTs) on equiangular pixelisations to reduce compu-
tation time through an association between the sphere and the
torus, while their complexity remains O(L3). To our knowl-
edge, the first algorithm based on this technique was developed
by Dilts [33], where the North and South poles of the sphere
were identified to map the sphere to the torus. However, this
algorithm is approximate and does not result in a sampling
theorem on the sphere. One of the authors of this article
developed a sampling theorem on the sphere [34] by making
periodic extensions of the sphere in colatitude in order to make
an association with the torus. This sampling theorem requires
NM = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere
and, moreover, applies to any spin number without the applica-
tion of spin lowering and raising operators. However, the for-
ward algorithm associated with this sampling theorem proved
unstable (the inverse algorithm did not suffer from stability
issues). Recently, Huffenberger & Wandelt [35] adopted the
inverse transform of this approach and resolved the instability
in the forward algorithm, although in doing so increased the
number of points required to sample a band-limited function
on the sphere to NHW = 2L(2L− 1) ∼ 4L2. In this article we
readdress sampling theorems derived by associating the sphere
with the torus through periodic extensions and develop a sam-
pling theorem requiring NMW = (L− 1)(2L− 1) + 1 ∼ 2L2

samples on an equiangular pixelisation, with corresponding
fast algorithms that do not suffer from any stability issues.

III. HARMONIC ANALYSIS ON THE SPHERE

In this section we review harmonic analysis on the two-
sphere S2. We first review the scalar spherical harmonic
transform, before generalising to the spin case. Associations
are then made between the spin spherical harmonics and the
Wigner functions, where the latter provide an orthogonal basis
for the decomposition of square integrable functions on the
rotation group SO(3).

A. Scalar spherical harmonics

We consider the space of square integrable functions on the
sphere L2(S2), with the inner product of f, g ∈ L2(S2) defined
by

〈f, g〉 =

∫
S2

dΩ(θ, ϕ) f(θ, ϕ) g∗(θ, ϕ) ,

where dΩ(θ, ϕ) = sin θ dθ dϕ is the usual invariant measure
on the sphere and (θ, ϕ) define spherical coordinates with
colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π). Complex
conjugation is denoted by the superscript ∗.

The scalar spherical harmonic functions form the canonical
orthogonal basis for the space of L2(S2) scalar functions on
the sphere and are defined by

Y`m(θ, ϕ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ) eimϕ ,

for natural ` ∈ N and integer m ∈ Z, |m| ≤ `, where
Pm` (x) are the associated Legendre functions. We adopt the
Condon-Shortley phase convention, with the (−1)m phase
factor included in the definition of the associated Legendre
functions, to ensure that the conjugate symmetry relation
Y ∗`m(θ, ϕ) = (−1)m Y`,−m(θ, ϕ) holds. The orthogonality
and completeness relations for the spherical harmonics read
〈Y`m, Y`′m′〉 = δ``′δmm′ and

∞∑
`=0

∑̀
m=−`

Y`m(θ, ϕ) Y ∗`m(θ′, ϕ′) = δ(cos θ− cos θ′) δ(ϕ− ϕ′)

respectively, where δij is the Kronecker delta symbol and δ(x)
is the Dirac delta function.

Due to the orthogonality and completeness of the scalar
spherical harmonics, any square integrable scalar function on
the sphere f ∈ L2(S2) may be represented by its spherical
harmonic expansion

f(θ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) ,

where the spherical harmonic coefficients are given by the
usual projection onto each basis function: f`m = 〈f, Y`m〉.
The conjugate symmetry relation of the spherical harmonic
coefficients of a real function is given by f∗`m = (−1)m f`,−m,
which follows directly from the conjugate symmetry of the
scalar spherical harmonic functions.

B. Spin spherical harmonics

Square integrable spin functions on the sphere sf ∈ L2(S2),
with integer spin s ∈ Z, are defined by their behaviour under
local rotations. By definition, a spin function transforms as

sf
′(θ, ϕ) = e−isχ sf(θ, ϕ) (1)

under a local rotation by χ, where the prime denotes the
rotated function. It is important to note that the rotation
considered here is not a global rotation on the sphere, such as
that represented by an element of the rotation group SO(3),
but rather a rotation by χ in the tangent plane at (θ, ϕ). The
sign convention that we adopt here for the argument of the
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complex exponential in (1) differs to the original definition
[36] but is identical to the convention used recently in the
context of the polarisation of the CMB [37].

The spin spherical harmonics sY`m(θ, ϕ) form an orthog-
onal basis for L2(S2) spin s functions on the sphere for
|s| ≤ `. Spin spherical harmonics were first developed by
Newman & Penrose [36] and were soon realised by Gold-
berg [38] to be closely related to the Wigner functions. We
therefore defer the explicit definition of the spin spherical
harmonic functions until Sec. III-C. The conjugate symme-
try relation given for the spin spherical harmonics is given
by sY

∗
`m(θ, ϕ) = (−1)s+m−sY`,−m(θ, ϕ). The spin spherical

harmonics satisfy identical orthogonality and completeness
relations as the scalar spherical harmonics.

Due to the orthogonality and completeness of the spin
spherical harmonics, any square integrable spin function on
the sphere sf ∈ L2(S2) may be represented by its spherical
harmonic expansion

sf(θ, ϕ) =

∞∑
`=0

∑̀
m=−`

sf `m sY`m(θ, ϕ) ,

where the spin spherical harmonic coefficients are given by the
usual projection onto each basis function: sf `m = 〈sf, sY`m〉.
Note that the spin spherical harmonics and transforms simply
generalise the scalar equivalents to spin signals, reducing to
the standard scalar case for s = 0. When deriving our novel
sampling theorem we consider signals on the sphere band-
limited at L, that is signals such that sf `m = 0, ∀` ≥ L. The
conjugate symmetry relation of the spin spherical harmonic
coefficients is given by sf

∗
`m = (−1)s+m −sf`,−m for a

function satisfying sf
∗ = −sf (which for a spin s = 0

function equates to the usual reality condition) and follows
directly from the conjugate symmetry of the spin spherical
harmonics.

Spin raising and lowering operators, ð and ð̄ respectively,
exist so that spin s± 1 functions may be obtained from spin
s functions [36], [38]. Spin raising and lowering operators
are often used repeatedly to relate spin s functions to scalar
functions on the sphere.

C. Wigner functions

The Wigner functions D`
mn(α, β, γ), for natural ` ∈ N

and integer m,n ∈ Z, form an orthogonal basis for the
space L2(SO(3)) of square integrable functions on the rotation
group, and are parameterised by the Euler angles (α, β, γ),
where α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π).6 The Wigner
functions may be decomposed as [39]

D`
mn(α, β, γ) = e−imα d`mn(β) e−inγ , (2)

6We adopt the zyz Euler convention corresponding to the rotation of a
physical body in a fixed co-ordinate system about the z, y and z axes by γ,
β and α respectively.

where the real polar d-functions are defined by [39]

d`mn(β) =

√
(`+ n)!(`− n)!

(`+m)!(`−m)!

(
sin

β

2

)n−m
×
(

cos
β

2

)n+m
P

(n−m,n+m)
`−n (cosβ) , (3)

where P (a,b)
` (·) are the Jacobi polynomials. Note that recur-

sion formulae are available to compute rapidly the Wigner
d-functions (e.g. [40], [41]). The d-functions satisfy a number
of symmetry relations; in this work we make use of the
symmetry relations [39]

d`mn(β) = (−1)m−n d`−m,−n(β) , (4)

d`mn(π − β) = (−1)`−n d`−m,n(β) (5)

and
d`mn(−β) = (−1)m−n d`mn(β) . (6)

We are not concerned with decompositions of functions on
the rotation group in this article but rather representations
of the spherical harmonics by Wigner functions. The spin
spherical harmonics may be defined by the Wigner functions
through [38]

sY`m(θ, ϕ) = (−1)s
√

2`+ 1

4π
D` ∗
m,−s(ϕ, θ, 0) . (7)

Defining the spherical harmonics in this manner allows us to
apply standard Wigner function decompositions to the spher-
ical harmonic functions. We subsequently make considerable
use of the Fourier series decomposition of the d-functions
given by [42]:

d`mn(β) = in−m
∑̀

m′=−`

∆`
m′m ∆`

m′n eim
′β . (8)

where ∆`
mn ≡ d`mn(π/2). This expression follows from a

factoring of rotations as highlighted by Risbo [40]. The Fourier
series representation of d`mn(β) given by (8) allows one to
write the spherical harmonic expansion of sf in terms of
a Fourier series expansion of sf extended appropriately to
the two-torus T2 (as discussed in more detail in Sec. IV).
Consequently, (8) is fundamental to the derivation of our
sampling theorem on the sphere and fast algorithms.

IV. FAST SPHERICAL HARMONIC TRANSFORM

We derive fast algorithms for performing forward and
inverse spin spherical harmonic transforms and discuss the
corresponding sampling theorem on the sphere. Our approach
involves an extension of the sphere to the torus so that
FFTs may be exploited to reduce the cost of computation.
It is related closely to the algorithms derived by one of
the authors in a previous work [34] and to the algorithms
derived by Huffenberger & Wandelt [35], however it does
not suffer from the instabilities of the former approach and
requires only half as many samples on the sphere as the latter
approach. We first present the general harmonic formulation
of our algorithms, followed by a discussion of periodisation
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and discretisation, before deriving algorithms to perform exact
forward and inverse transforms. Our sampling theorem also
leads to a new quadrature rule on the sphere, which we then
present, followed by a discussion of symmetries that may be
exploited to improve the efficiency of computation for real
signals.

A. Harmonic formulation

We consider the harmonic transform of spin functions on
the sphere sf ∈ L2(S2), band-limited at L; consequently, all
summations over or up to ` are truncated to L−1. Furthermore,
harmonic coefficients are not defined for |m| > `, hence we
define them to be zero to enforce the contraint |m| ≤ ` when
summations are interchanged.

By noting the definition of the spin spherical harmonics in
terms of Wigner functions (7), the Wigner decomposition (2)
and the Fourier expansion of the Wigner d-functions (8), the
forward transform of sf may be written

sf `m = (−1)sim+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆`
m′m∆`

m′,−ssGmm′ ,

(9)
where

sGmm′ =

∫ π

0

dθ sin θ sGm(θ) e−im
′θ (10)

and

sGm(θ) =

∫ 2π

0

dϕ sf(θ, ϕ) e−imϕ . (11)

In Sec. IV-D we consider implicit quadrature rules to evaluate
(10) and (11) exactly. By noting the same substitutions and
interchanging the order of summation, the inverse transform
of sf `m may be written

sf(θ, ϕ) =

L−1∑
m=−(L−1)

sFm(θ) eimϕ , (12)

where

sFm(θ) =

L−1∑
m′=−(L−1)

sFmm′ eim
′θ (13)

and

sFmm′ = (−1)s i−(m+s)
L−1∑
`=0

√
2`+ 1

4π
∆`
m′m ∆`

m′,−s sf `m .

(14)
Although recasting the forward and inverse spherical harmonic
transforms in this manner is no more efficient than the original
formulation, expressions (10)–(13) highlight similarities with
Fourier series representations. However, the Fourier series
expansion is only defined for periodic functions; thus, to recast
these expressions in a form amenable to the application of
Fourier transforms we must make a periodic extension in
colatitude θ.

B. Periodic extension

We make a periodic extension of θ to the domain [0, 2π)
so that FFTs may be used to compute the forward and
inverse spherical harmonic transform rapidly. When making
this periodic extension we must be careful to ensure that
the symmetry of our current representation is respected on
the new domain; we must apply the symmetries dictated
by the inverse transform when imposing periodisation in the
forward transform. By substituting (12) into (11) and noting
the continuous orthogonality of the complex exponentials, we
find the forward and inverse expressions in θ are related by

sGm(θ) = 2π sFm(θ) . (15)

Consequently, the symmetry we impose in sGm(θ) when
extended periodically must match the symmetry of sFm(θ).
By reflecting θ, we obtain the following symmetry for sFm(θ):

sFm(−θ) =
∑̀

m′=−`
sFmm′ e−im

′θ = (−1)m+s
sFm(θ) ,

where we have noted the symmetry

sFm,−m′ = (−1)m+s
sFmm′ (16)

following from (14) and (5). Thus, we extend sGm(θ) to the
[0, 2π) domain by constructing7

sG̃m(θ) =

{
sGm(θ) , θ ∈ [0, π]

(−1)m+s
sGm(2π − θ) , θ ∈ (π, 2π)

.

Note that we adopt a different periodic extension to other
approaches framed on the torus [34], [35] by applying the
extension to the Fourier transform of sf in ϕ, i.e. to sGm(θ).
Two periodic extensions, one even and one odd, were required
in the approach taken previously by one of the authors [34].
Huffenberger & Wandelt [35] apply the (−1)m factor as a shift
in ϕ by π, removing the need for two periodic extensions
but requiring a even number of samples in ϕ, precluding
an association with the odd number of points in m unless
oversampling is performed. We avoid these restrictions by
applying the periodic extension to the Fourier transform in
ϕ of sf , rather than to sf directly.

C. Discretisation

We adopt an equiangular sampling of the sphere with
sample positions given by

θt =
π(2t+ 1)

2L− 1
, where t ∈ {0, 1, . . . , L− 1} (17)

7We check that this periodic extension does not impose disconti-
nuities at the poles θ? ∈ {0, π}. To avoid discontinuities we require
sFm(θ?) = (−1)m+s

sFm(θ?), which follows trivially for m+ s even.
From (6) we find d`m,−s(θ

?) = (−1)m+s d`m,−s(θ
?), which, due to the

continuity of the Wigner d-functions, implies d`m,−s(θ
?) = 0 for m+ s

odd. Combined with the representation, for m+ s odd,

sFm(θ) = (−1)s
L−1∑
`=0

√
2`+ 1

4π
d`m,−s(θ) sf`m ,

this implies sFm(θ?) = 0 for m+ s odd; hence our periodic extension does
not impose any discontinuity.
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and

ϕp =
2πp

2L− 1
, where p ∈ {0, 1, . . . , 2L− 2} . (18)

In order to extend the θ domain to [0, 2π) we simply extend
the domain of the t index to include {L,L+ 1, . . . , 2L− 1}.

An odd number of sample points are required in both θ and
ϕ in the extended domain so that a direct association may
be made with the harmonic indices m and m′, resulting in
NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere.
We also require a symmetric sampling in θ about the South
pole so that samples on the extended domain can be obtained
by reflecting samples defined on the original domain. The node
positions specified by (17) and (18) eliminate repeated samples
at the poles θ = 0 and θ = 2π since these points are excluded
from the pixelisation. However, it is not possible to eliminate
repeated samples at θ = π, since we require a discretisation
that is symmetric about π but which contains an odd number
of sample points.

D. Forward transform

The algorithm we derive in this section to compute a
forward spin spherical harmonic transform essentially follows
the harmonic formulation presented in Sec. IV-A, however we
discuss implicit quadrature rules for the exact evaluation of
(10) and (11).

Since (11) is simply a Fourier transform we may appeal
to the discrete and continuous orthogonality of the complex
exponential to express this integral exactly by

sGm(θt) =
2π

2L− 1

L−1∑
p=−(L−1)

sf(θt, ϕp) e−imϕp ,

for t ∈ {0, 1, . . . , L − 1}. An FFT may be used to compute
sGm(θt) for all m and t with computational complexity
O(L2 log2 L). We extend sGm(θ) to the domain θ ∈ [0, 2π)
through the construction

sG̃m(θt) ={
sGm(θt) , t ∈ {0, 1, . . . , L− 1}
(−1)m+s

sGm(θ2L−2−t) , t ∈ {L, . . . , 2L− 2}
,

noting 2π − θt = θ2L−2−t.
We now consider an implicit quadrature rule for the exact

evaluation of sGmm′ through (10). Firstly, however, we com-
pute sFmm′ from sG̃m(θt) by noting (15) and by appealing
to the discrete orthogonality of the complex exponentials to
invert (13), giving

sFmm′ =
1

2π(2L− 1)

L−1∑
t=−(L−1)

sG̃m(θt) e−im
′θt .

An FFT may be used to compute sFmm′ for all m and m′

with computational complexity O(L2 log2 L). Now that we
have sFmm′ to hand, we substitute (13) into (10), noting (15),

to yield

sGmm′ =

∫ π

0

dθ sin θ sG̃m(θ) e−im
′θ

= 2π

L−1∑
m′′=−(L−1)

sFmm′′ w(m′′ −m′) , (19)

where the weights are given by

w(m′) =

∫ π

0

dθ sin θ eim
′θ

=


±iπ/2, m′ = ±1

0, m′ odd, m′ 6= ±1

2/(1−m′2), m′ even
.

Note that the definition of these weights is identical to that
derived by Huffenberger & Wandelt [35], however we correct
some (typographical) errors in their explicit evaluation. Since
we are concerned with the values of sGmm′ for |m′| ≤ L−1,
the computation of sGmm′ through (19) explicitly requires
weights with argument up to ±2(L − 1). If the range of m′

is extended to |m′| ≤ 3(L − 1), (19) may be seen as a (re-
flected) convolution, which may be computed more efficiently
following a Fourier transform. However, since only the range
|m′| ≤ L−1 is of interest, aliasing may be tolerated provided
that it is outside of this range. To ensure that this is the case
we zero-pad sFmm′ in the domain |m′| ∈ {L, . . . , 2L − 2}
prior to computing an inverse Fourier transform. We then
compute an inverse Fourier transform of the weights on the
same extended domain and take the product of these terms,
the Fourier transform of which gives sGmm′ . Using FFTs to
compute sGmm′ in this manner reduces the computational
complexity from O(L3) for the direct calculation of (19) to
O(L2 log2 L).

Once we have computed sGmm′ through the implicit
quadrature rule discussed previously, we simply compute the
spin spherical harmonic coefficients sf `m through (9). The
complexity of this computation is O(L3), which dominates
the overall complexity of the forward algorithm.

The forward algorithm may be summarised conceptually as
follows, where we view the upsampling and application of
weights in the spatial domain:

1: procedure FORWARD TRANSFORM( sf )
2: compute the Fourier transform of sf in ϕ
3: extend the resultant function to 2π in θ
4: upsample the resultant function in θ
5: multiply by the inverse Fourier transform of the

reflected weights and take the Fourier transform
in θ to give the coefficients sGmm′

6: compute the spherical harmonic coefficients sf `m
from sGmm′

7: return sf `m
8: end procedure
Although the complexity of this approach remains identical

to a standard separation of variables, the continual use of FFTs
reduces the constant prefactor associated with the asymptotic
scaling considerably, resulting in an algorithm that may be
used to compute harmonic coefficients rapidly. Furthermore,
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a precomputation is not required, which can otherwise ne-
cessitate very large storage requirements for high band-limits.
Finally, note that this algorithm applies to both scalar and spin
functions without any change in computational complexity or
computation time.

E. Inverse transform

The inverse algorithm follows the harmonic formulation
presented in Sec. IV-A closely. Firstly, sFmm′ is computed
directly through (14), where we also exploit the symmetry
(16) to reduce the number of computations by a factor of
two. The complexity of this computation is O(L3), which
dominates the overall complexity of the inverse algorithm.
FFTs are then used to evaluate (13) and (12) rapidly over
the extended domain, with complexities O(L2 log2 L) for both
computations. To facilitate the efficient calculation of (12)
through the use of an FFT, we compute function values on the
extended θ domain [0, 2π), however we discard those values
computed in the domain (π, 2π). The algorithm presented
here to compute the inverse transform is identical to that first
proposed by one of the authors [34] and subsequently adopted
by Huffenberger & Wandelt [35]. The inverse algorithm may
be summarised as follows:

1: procedure INVERSE TRANSFORM( sf `m )
2: compute the Fourier coefficients sFmm′ from sf `m
3: compute the function samples on the extended

domain by an inverse Fourier transform
4: construct sf by discarding samples computed in the

θ domain (π, 2π)
5: return sf
6: end procedure
Since we construct algorithms to perform forward and

inverse spherical harmonic transforms that are theoretically ex-
act, our construction corresponds to a novel sampling theorem
on the sphere. Moreover, to represent a band-limited signal on
the sphere our sampling theorem requires less than half the
number of number of samples required by other equiangular
sampling theorems on the sphere [23], [26], [35] and an
asymptotically identical, but smaller, number of samples that
the Gauss-Legendre sampling theorem.

F. Quadrature

The construction of our sampling theorem on the sphere can
be used to define an explicit quadrature rule for the integration
of a function band-limited at L. This integration, which
corresponds to computing the spherical harmonic coefficient
sf00, requires approximately half as many samples as needed
to compute all spherical harmonic coefficients. We define the
explicit quadrature weights q(θt) to evaluate the following
integral exactly by the finite sum:

I =

∫
S2

dΩ(θ, ϕ)sf(θ, ϕ) =

L−1∑
t=0

L−1∑
p=0

sf(θt, ϕ
′
p)q(θt) , (20)

where ϕ′p = 2πp/L. As seen from (9), the computation of
sf00 requires sGmm′ for m = m′ = 0 only. Consequently,
aliasing in m in all Fourier coefficients sGmm′ except m = 0

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

θ

W
ei
gh
t

(a) Weights for L = 4

0 0.5 1 1.5 2 2.5 3

−0.1

−0.05

0

0.05

0.1

θ

D
iff
er
en
ce

(b) Difference for L = 4

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

θ

W
ei
gh
t

(c) Weights for L = 64
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Fig. 1. Exact quadrature weights corresponding to our sampling theorem. In
the left column of panels the weights v(θt) (red squares) defined on [0, 2π)
and the quadrature weights q(θt) (yellow diamonds) defined on [0, π] are
plotted. These values are compared to samples of the function defined by
sin(θ) on [0, π) and zero on [π, 2π) (solid black line). In the right column
of panels the difference between the quadrature weights q(θt) and sin(θ) are
plotted.

may be tolerated, hence the number of samples required in ϕ
is reduced from 2L−1 to L. From the (reflected) convolution
(19), it is apparent that the coefficients sFmm′ are required
for all m′ (for m = 0 only). Consequently, the sampling in θ
remains unchanged, with L samples. However, only weights
with argument up to ±(L − 1) are required. The (reflected)
convolution thus spans the range |m′| ≤ 2(L − 1). However,
since only m′ = 0 is of interest aliasing may be tolerated
in m′ in all Fourier coefficients sGmm′ except m′ = 0,
so that zero-padding is not required before computing the
(reflected) convolution as a product in the spatial domain. The
absence of upsampling leads to the explicit quadrature (20),
with L(L− 1) + 1 samples on the sphere, where the weights
are defined by

q(θt) =
2π

L

[
v(θt) + (1− δt,L−1) (−1)s v(θ2L−2−t)

]
,

and where v(θt) is the inverse discrete Fourier transform of
the reflected weights w(−m′):

v(θt) =
1

2L− 1

L−1∑
m′=−(L−1)

w(−m′) eim
′θt .

The weights v(θt) defined on [0, 2π) are exactly the samples of
the function defined by sin(θ) on [0, π) and zero on [π, 2π),
band-limited at L. The quadrature weights q(θt) defined on
[0, π] are constructed simply by folding the contributions of
v(θt) on (π, 2π) back onto the [0, π] domain. Both of these
weights are plotted and compared to sin(θ) in Fig. 1.
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G. Real signals

In many practical applications signals observed on the
sphere satisfy a reality condition. For spin signals, the re-
ality condition is given by sf

∗ = −sf , which implies the
conjugate symmetry condition sf

∗
`m = (−1)s+m −sf`,−m on

the spherical harmonic coefficients of the signal. When this
reality condition is satisfied (for example, when considering
the polarisation of the CMB), we may exploit this symmetry to
recover the harmonic coefficients of a spin −s signal for free
from the coefficients of a spin s signal. For the spin s = 0 case,
the reality condition reduces to the standard reality condition
of a scalar signal, implying f∗`m = (−1)m f`,−m. In this case,
noting (14) and (4), we obtain the symmetry

0F−m,−m′ = 0Fmm′
∗ .

We exploit these symmetries to reduce the computational cost
of both the forward and inverse algorithms by an additional
factor of approximately two for real spin s = 0 signals.

V. EVALUATION

We have implemented our fast algorithms to compute
spherical harmonic transforms in double precision arithmetic,
exploiting all of the symmetries discussed in Sec. IV to
optimise the implementation.8 The core implementation used
for the numerical experiments presented in this section is
written in C, using the FFTW9 package to compute Fourier
transforms, however we also provide a MATLAB interface.
We make our Spin Spherical Harmonic Transform (SSHT)
package containing this implementation available publicly.10

For comparison purposes, we also implemented in the SSHT
package an optimised algorithm to compute spherical har-
monic transforms for the Gauss-Legendre sampling theorem
on the sphere.11 This algorithm is based on a separation
of variables and a direct application of the Gauss-Legendre
quadrature rule, resulting in complexity O(L3).

In this section we evaluate our sampling theorem and fast
algorithms in terms of the number of samples required to

8The structure of our algorithms suggest multiple transforms of different
spin may in theory be computed simultaneously at lower cost than consecutive
computation (since Wigner d-functions do not need to be recomputed and
some computations are independent of spin). However, for simplicity we do
not incorporate this optimisation in our current implementation.

9http://www.fftw.org/
10http://www.jasonmcewen.org/
11It is well know that Gauss-Legendre quadrature may be used to construct

an exact sampling theorem on the sphere. Gauss-Legendre quadrature with P
points is exact only for a polynomial integrand of order less than or equal
to 2P − 1. Since neither the associated Legendre functions nor the Wigner
d-functions are polynomials in cos θ, it does not follow immediately that
Gauss-Legendre quadrature results in an exact harmonic transform for scalar
and spin signals on the sphere band-limited at L; nevertheless, this is indeed
the case. We prove the result for spin s signals on the sphere, thus the scalar
case will follow simply by setting s = 0. For L samples in θ, we must
simply prove that the integrand d`ms(θ)−sGm(θ) is polynomial in cos θ of
maximum degree less than or equal 2L− 1. From inspection of (3), we may
write the Wigner d-functions as a polynomial of degree `− s, multiplied by
(1− cos θ)(s−m)/2(1 + cos θ)(s+m)/2. Similarly, we may write −sGm(θ)
as a polynomial of degree L − 1 − s, multiplied by the same factor. The
integrand is therefore polynomial with overall degree L−1+`, which reaches
a maximum of 2L− 2. Gauss-Legendre quadrature with L samples in θ may
thus be used to compute exact spherical harmonic transforms of scalar and
spin functions band-limited at L.
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Fig. 2. Number of samples N required to represent exactly a signal on
the sphere of band-limit L for the following sampling theorems: Gauss-
Legendre sampling theorem (blue/dot-dashed line); Driscoll & Healy sampling
theorem (green/dashed line); and the sampling theorem developed in this
article (red/solid line). The inset shows very low band-limits, where the
difference between Gauss-Legendre sampling and our sampling can have a
large impact.

represent a band-limited function, numerical precomputation
(or lack thereof), the recursions used to compute Wigner
d-functions, and numerical accuracy and computation time.
Finally, we evaluate our sampling theorem in the context of
potential applications.

A. Sampling

The number of samples required to represent a band-limited
function on the sphere exactly is the fundamental property of
any sampling theorem, with fewer samples desired. Both the
Gauss-Legendre and our sampling theorems require in general
NGL ∼ NMW ∼ 2L2 samples, while the Driscoll & Healy
sampling theorem requires NDH ∼ 4L2 samples. We therefore
provide a reduction in number of samples by a factor of two
compared to the canonical equiangular sampling theorem on
the sphere. Furthermore, we require NGL −NMW = 3(L− 1)
fewer samples that the Gauss-Legendre sampling theorem,
which for small band-limits can be significant (as discussed
in Sec. V-E). The optimal number of samples attainable by a
sampling theorem on the sphere is given by the L2 degrees
of freedom in harmonic space. No sampling theorem on the
sphere reaches this bound in general. However, both the Gauss-
Legendre and our sampling theorem reach the L2 bound in
the limiting case of small L (we reach the bound for the cases
L ∈ {1, 2}, the Gauss-Legendre sampling theorem reaches the
bound for L = 1 only, while the Driscoll & Healy sampling
theorem never reaches the bound). In Fig. 2 we plot the
number of samples against band-limit for various sampling
theorems. We also plot the position of samples for each of
these sampling theorems in Fig. 3.

B. Precomputation

It is possible to reduce the computational burden of our
fast algorithms by precomputing the Wigner d-functions for
argument π/2 and for all required harmonic indices. Such
a precomputation would require O(L3) storage, similar to

http://www.fftw.org/
http://www.jasonmcewen.org/
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(a) View of North pole

(b) View of South pole

Fig. 3. Sampling schemes for the exact representation of a signal band-
limited at L = 12. Sample positions are shown for the following sampling
theorems: Gauss-Legendre sampling theorem (blue dots); Driscoll & Healy
sampling theorem (green dots); and the sampling theorem developed in
this article (red dots). Notice that the Driscoll & Healy sampling theorem
requires approximately twice as many samples on the sphere as the alternative
samplings.

the storage requirements of the precomputation for Driscoll
& Healy based algorithms [26], [27], [29]. For these latter
approaches precomputation is essential to recover the fast
algorithms with complexity below O(L3). However, for high
band-limits the storage requirements become impractical at
present (recall that the precomputation at L = 4096 is
expected to require approximately 77GB of storage). The
Wigner d-functions may be evaluated accurately and rapidly
using recursion formulae; therefore to avoid storage problems
we do not perform any precomputation and instead compute
Wigner d-functions on-the-fly using the method of Risbo [40].

C. Computing Wigner functions

Since our algorithms require Wigner d-functions evaluated
on the entire (m,m′) plane for argument π/2 only, they are
flexible with regard to the choice of recursion used to compute
the Wigner plane for a given `. For example, for the on-the-fly
computation of Wigner d-functions we may use the recursion
of Risbo [40] (which requires the entire plane) or Trapani &
Navaza [41] (which is restricted to argument π/2), which are
both of complexity O(L2), without altering the overall O(L3)
complexity of our algorithms. However, this is not the case for

alternative algorithms.
To compute spherical harmonic transforms for the Gauss-

Legendre and Driscoll & Healy sampling theorems using
the O(L3) algorithms described previously, it is necessary
to compute Wigner d-function values for a single row of
the Wigner plane only, but for all ` and all values of θ.
For the overall algorithms to remain O(L3), the on-the-fly
computation of the row of the Wigner plane must be performed
in O(L) computations. This precludes the use of the recursions
devised by Risbo [40] and by Trapani & Navaza [41], for
example, both of which would result in an overall algorithm
with complexity O(L4). Instead, alternative recursions must
be used, such as the three-term recursion in ` that goes
pointwise through the Wigner plane (see e.g. (4.5) of [28]; this
recursion is used in our implementation of the Gauss-Legendre
sampling theorem). The inflexibility of these algorithms with
regard to the choice of recursion used to compute Wigner d-
functions becomes important when we study the stability of
these recursions in the following section. Of course, this issue
may be resolved by precomputing Wigner d-functions using
any recursion, but as we have seen this becomes problematic
at large band-limits.

D. Numerical accuracy and computation time

We evaluate the numerical accuracy and computation time
of our algorithms that implement our new sampling theo-
rem, comparing them to our optimised implementation of the
Gauss-Legendre sampling theorem and to the semi-naive algo-
rithm [27] in SpharmonicKit12 implementing the Driscoll
& Healy sampling theorem. For all cases we do not perform
any precomputation since this is infeasible for high band-limits
(recall that the semi-naive algorithm is the fastest algorithm
implementing the Driscoll & Healy sampling theorem that
does not require precomputation). In order to assess numerical
accuracy and computation time we perform the following
numerical experiment. We generate band-limited test signals
on the sphere defined by uniformly random spherical harmonic
coefficients with real and imaginary parts distributed in the
interval [−1, 1]. An inverse transform is performed to synthe-
sise the test signal on the sphere from its spherical harmonic
coefficients, followed by a forward transform to recompute
harmonic coefficients. Numerical accuracy is measured by
the maximum absolute error between the original spherical
harmonic coefficients sf

o
`m and the recomputed values sf

r
`m,

i.e. ε = max`,m
∣∣
sf

r
`m−sf

o
`m

∣∣. Computation time is measured
by the round-trip computation time taken to perform the
inverse and forward transform. All numerical experiments are
performed on a 2.5GHz Intel Pentium dual core processor with
4GB of RAM and are averaged over five random test signals.

The maximum absolute error is plotted against band-limit
in Fig. 4 for different sampling theorems. High numerical
accuracy is achieved for all sampling theorems at moderate
band-limits, with errors on the order of the machine precision
and increasing approximately linearly with band-limit. For
the Gauss-Legendre sampling theorem we use the gauleg
routine of Numerical Recipes [43] to compute Gauss-Legendre

12http://www.cs.dartmouth.edu/˜geelong/sphere/

http://www.cs.dartmouth.edu/~geelong/sphere/
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node positions and weights. This method is based on an initial
approximation for each node position, followed by an iterative
refinement based on Newton’s method, which is likely to
explain the slightly inferior error performance of the corre-
sponding algorithms. Furthermore, the algorithms implement-
ing both the Gauss-Legendre and Driscoll & Healy sampling
theorems suffer from their lack of flexibility regarding the
recursion used to compute Wigner d-functions (or associated
Legendre functions for the spin s = 0 case), which necessitates
the use of the less accurate pointwise three-term recursion
in `, rather than more accurate alternatives. Consequently,
the numerical accuracy of our algorithms is superior to the
optimised implementations of the alternative sampling theo-
rems. More importantly, however, both the Gauss-Legendre
sampling theorem and the semi-naive implementation of the
Driscoll & Healy sampling theorem go unstable between L =
1024 and L = 2048, due to the instability of the pointwise
three-term Wigner recursion. As discussed in Sec. V-C, these
algorithms require a recursion with complexity O(L), in order
to remain O(L3) for on-the-fly computation. To resolve the
instability of these algorithms it would be necessary to use the
alternative recursion of Risbo [40], making them O(L4), or to
perform a precomputation of Wigner d-functions. Neither of
these solutions are feasible for high band-limits, hence these
algorithms are restricted to moderate band-limits (unless an
alternative pointwise recursion can be found that is stable
to high band-limits). Due to the flexibility of our sampling
theorem with regard to Wigner recursion, we are able to use
Risbo’s recursion [40], which is stable to at least L = 4096,
without altering the complexity of our algorithms. Finally,
note that for the implementations that support spin transforms
(the Gauss-Legendre and our sampling theorems), the error
is identical (to statistical noise) for transforms of real and
complex signals of different spin.

The computation time for complex signals is plotted against
band-limit in Fig. 5 for different sampling theorems. For all
sampling theorems, computation time evolves as O(L3) as
predicted. The semi-naive algorithm is slightly faster than our
algorithm, which is in turn slightly faster than our optimised
implementation of the Gauss-Legendre sampling theorem.
Although we plot performance results for our algorithms
using the recursion of Risbo [40], we also implemented the
recursion of Trapani & Navaza [41], which we found to be
approximately 20% faster than Risbo’s approach but which
goes unstable between L = 2048 and L = 4096. Nevertheless,
the Trapani & Navaza [41] recursion can be used at band-
limits at or below L = 2048 to provide a considerable speed
enhancement. In this case, at band-limit L = 1024 we are
approximately 25% slower than the semi-naive algorithm,
but twice as fast as the Gauss-Legendre algorithm. However,
the semi-naive algorithm applies for scalar functions only
(and requires approximately twice as many samples on the
sphere), while the alternative sampling theorems also apply
directly for spin functions on the sphere. Finally, note that for
the implementations that support spin transforms (the Gauss-
Legendre and our sampling theorems), computation time is
identical (to statistical noise) for transforms of signals of
different spin, as predicted.
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Fig. 4. Numerical accuracy of the algorithms implementing the fol-
lowing sampling theorems: our optimised implementation of the Gauss-
Legendre sampling theorem (blue/dot-dashed line); the semi-naive algorithm
in SpharmonicKit implementing the Driscoll & Healy sampling theorem
(green/dashed line); and our algorithms implementing the sampling theorem
developed in this article (red/solid line). O(L) scaling is shown by the
heavy black/solid line. The algorithms implementing the Gauss-Legendre and
Driscoll & Healy sampling theorems go unstable between L = 1024 and
L = 2048, due to the enforced use of the pointwise three-term Wigner
recursion. For the Gauss-Legendre and our sampling theorems, which both
support spin transforms, the maximum absolute error ε is averaged over
complex signals of spin s ∈ {0, 2, 10} and a real spin s = 0 signal, with
one standard deviation error bars shown (in most cases differences are very
small and error bars cannot be seen easily). Note that for these cases the
maximum absolute error is identical (to statistical noise) for transforms of
real and complex signals of different spin.
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Fig. 5. Computation time of the algorithms implementing the fol-
lowing sampling theorems: our optimised implementation of the Gauss-
Legendre sampling theorem (blue/dot-dashed line); the semi-naive algorithm
in SpharmonicKit implementing the Driscoll & Healy sampling theorem
(green/dashed line); and our algorithms implementing the sampling theorem
developed in this article (red/solid line). O(L3) scaling is shown by the
heavy black/solid line. The algorithms implementing the Gauss-Legendre and
Driscoll & Healy sampling theorems go unstable between L = 1024 and
L = 2048, due to the enforced use of the pointwise three-term Wigner
recursion. For the Gauss-Legendre and our sampling theorems, which both
support spin transforms, the computation time τ (seconds) is averaged over
complex signals of spin s ∈ {0, 2, 10}, with one standard deviation error
bars shown (in most cases differences are very small and error bars cannot
be seen easily). Note that for these cases the computation time is identical (to
statistical noise) for transforms of signals of different spin.



MCEWEN & WIAUX: A NOVEL SAMPLING THEOREM ON THE SPHERE 11

E. Applications

We discuss three potential applications of our sampling the-
orem in the fields of cosmology, neuroscience and compressive
sampling (CS). For each case we highlight the enhancements
that our sampling theorem will afford.

For the analysis of CMB observations, our sampling theo-
rem and associated algorithms provide the ability to perform
fast spherical harmonic transforms that are exact at the very
high resolution of current and forthcoming CMB observations.
Furthermore, we can compute harmonic transforms of both the
temperature and polarisation of the CMB for identical cost.

The number of samples required to represent a band-
limited signal is not only of theoretical interest but also has
important practical application. A sampling theorem requiring
fewer samples means a band-limited function can be mea-
sured exactly for lower cost. This is particularly important
in applications where the cost of acquiring a single sample
is large. In neuroscience, for example, diffusion magnetic
resonance imaging (MRI) [44] is one such application, where
cost is measured in terms of acquisition time. Diffusion
MRI has received considerable attention recently as a non-
invasive technique to image structural neuronal connectivity
in the brain. In this setting, most recent acquisition strategies
consider sampling on multiple spherical shells for each voxel
of the brain, from which an orientation distribution function
(ODF) describing the probability density of neuronal fibre
directions is recovered [45], [46]. The ODFs of each voxel
are then combined to recover neuronal connectivity. Given
the millions of voxels generally considered, at present this
imaging modality remains too time consuming for clinical use.
Typically, very low band-limits of order L ∼ 10 are considered
for each spherical shell. Consequently, when adopting an
exact sampling theorem even the small reduction in number
of samples between our sampling theorem and the Gauss-
Legendre approach of NGL −NMW = 3(L− 1) can have a
large impact on the total cost of acquisition. For a typical
example with acquisitions made on three concentric spherical
shells of increasing radius, it has been shown that band-limits
of three, five and nine, respectively, are required to limit
aliasing to acceptable levels [47]. For such an acquisition,
the total number of samples, and thus total acquisition time,
would be reduced by a factor of 13% when replacing Gauss-
Legendre sampling with our sampling theorem. This type of
enhancement is of considerable importance in order to make
diffusion MRI accessible for clinical use.

The recently developed theory of CS states that it is possible
to acquire sparse or compressible signals with fewer samples
than standard sampling theorems would suggest [48], [49]. In
these settings, the ratio of the number of required measure-
ments to the dimensionality of the signal scales linearly with
its sparsity [48]. By reducing the dimensionality of the signal
in the spatial domain, our sampling theorem will enhance
the performance of CS reconstruction on the sphere when
compared to alternative sampling theorems. Furthermore, for
sparsity priors defined in the spatial domain, such as signals
sparse in the magnitude of their gradient, sparsity is also
directly related to the sampling of the signal. For this class of

signals, we therefore expect to see an additional enhancement
in CS reconstruction performance when adopting our sampling
theorem. The use of CS techniques on the sphere is likely to
have wide-spread application for a wide range of problems,
including more efficient acquisition, denoising and deconvo-
lution on the sphere. In particular, all of these problems are
faced in diffusion MRI and in analysing the CMB, which we
are studying currently to evaluate in detail the enhancements
provided by our sampling theorem.

VI. CONCLUSIONS

We have developed a novel sampling theorem on the sphere,
with corresponding fast algorithms, by associating the sphere
with the torus through a periodic extension. To represent
a band-limited signal on the sphere exactly our sampling
theorem requires less than half the number of samples required
by other equiangular sampling theorems on the sphere and
an asymptotically identical, but smaller, number of samples
than the Gauss-Legendre sampling theorem on the sphere.
The complexity of our algorithms to compute both forward
and inverse transforms is O(L3), with identical scaling to a
standard separation of variables. However, the continual use
of FFTs reduces the constant prefactor associated with the
asymptotic scaling considerably, resulting in algorithms that
may be used to compute harmonic transforms rapidly. Nu-
merical experiments have shown our algorithms to be approx-
imately twice as fast as optimised algorithms implementing
the Gauss-Legendre sampling theorem but approximately 25%
slower than the semi-naive algorithm, the most universally
applicable algorithm implementing the equiangular Driscoll &
Healy sampling theorem. However, the semi-naive algorithm
applies for scalar functions only, while our sampling theorem
also applies directly for spin functions on the sphere (whereas
the computation time for a spin s transform using the semi-
naive algorithm would scale by 1+s). Numerical experiments
have also shown our algorithms to be numerically stable to
band-limits of L = 4096. Conversely, the algorithms that
implement the Gauss-Legendre and Driscoll & Healy sampling
theorems on the sphere are restricted in their use of Wigner
recursions and, due to the enforced use of the pointwise
three-term Wigner recursion, go unstable between band-limits
L = 1024 and L = 2048.

Our novel sampling theorem and fast algorithms will be of
practical benefit both at very high and low band-limits. For the
analysis of CMB data at very high band-limits (L ∼ 4096), our
sampling theorem yields exact spherical harmonic transforms
with algorithms that are stable and very accurate. For the
reconstruction of diffusion MRI images at low band-limits
(L ∼ 10), the reduction in the number of samples required by
our sampling theorem to represent a band-limited signal may
be exploited to reduce the cost of acquisition significantly. For
CS applications in both of these fields and beyond, the reduc-
tion in dimensionality and sparsity afforded by our sampling
theorem will enhance the performance of CS reconstruction
on the sphere.
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