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Abstract

A fast algorithm for Antoine and Vandergheynst’s (1998) directional Continuous Spherical
Wavelet Transform (CSWT) is presented. Computational requirements are reduced by a
factor of O(

√
Npix), when Npix is the number of pixels on the sphere. The spherical Mexican

Hat wavelet Gaussianity analysis of the WMAP 1-year data performed by Vielva et al. (2003)
is reproduced and confirmed using the fast CSWT. The proposed extension to directional
analysis is inherently afforded by the fast CSWT algorithm.

1 Introduction

A range of primordial processes imprint signatures on the temperature fluctuations of the Cosmic
Microwave Backround (CMB). For instance, various cosmic defect and non-standard inflationary
models predict non-Gaussian anisotropies. By studying the Gaussianity of the CMB anisotropies
evidence may be provided for competing scenarios of the early Universe. In addition, a num-
ber of astrophysical processes introduce secondary sources of non-Gaussianity. Measurement
systematics or contamination may also be highlighted by Gaussianity analysis.

Wavelets are a powerful tool for probing the Gaussianity of CMB anisotropies. Previous
wavelet analysis of the CMB, however, has been restricted to simple spherical Haar and isotropic
Mexican Hat wavelets. A directional analysis on the full sky has previously been prohibited by
the computational infeasibility of any implementation. We rectify this problem by providing
a fast algorithm for Antoine and Vandergheynst’s1 Continuous Spherical Wavelet Transform
(CSWT), based on the fast spherical convolution proposed by Wandelt and Górski6.

The remainder of this paper is organised as follows. The CSWT is presented in Section 2
and the fast implementation in Section 3. In Section 4 the fast CSWT is applied to reproduce
the non-Gaussianity CMB analysis performed by Vielva et al.5. Concluding remarks are made
in Section 5.



2 A directional Continuous Spherical Wavelet Transform

Antoine and Vandergheynst1 extend Euclidean wavelet analysis to spherical geometry by con-
structing a wavelet basis on the sphere. The natural extension of Euclidean motions on the
sphere are rotations, defined by (Rρf)(ω) = f(ρ−1ω), ρ ∈ SO(3), where we parameterise ρ by
the Euler angles (α, β, γ). Dilations on the sphere, denoted (Daf)(ω) = fa(ω), are constructed
by first lifting the sphere S2 to the plane by a norm preserving stereographic projection from the
South pole, performing the usual Euclidean dilation in the plane, before re-projecting back onto
S2. Mother spherical wavelets are constructed simply by projecting Euclidean planar wavelets
onto the sphere by a norm preserving inverse stereographic projection. A wavelet basis on S 2

may be constructed from rotations and dilations of an admissible mother spherical wavelet. The
corresponding wavelet family {ψa,ρ ≡ RρDaψ, ρ ∈ SO(3), a ∈ R

+
∗ } provides an over-complete

set of functions in L2(S2). The CSWT is given by the projection onto each wavelet basis function

S(a, α, β, γ) =

∫

S2

(Rα,β,γψa)
∗(ω′) s(ω′) dµ(ω′) , (1)

where the ∗ denotes complex conjugation and dµ(ω) = sin(θ) dθ dφ is the usual rotation invariant
measure on the sphere.

3 Fast algorithm

A direct implementation of the CSWT is simply not computationally feasible for a data set
of any practical size; a fast algorithm is essential. At a particular scale the CSWT is essen-
tially a spherical convolution, hence it is possible to apply Wandelt and Górski’s6 fast spherical
convolution algorithm to rapidly evaluate the transform.

3.1 Fast implementation

There does not exist any finite point set on the sphere that is invariant under rotations, hence
it is more natural, and in fact more accurate for numerical purposes, to recast the CSWT in
spherical harmonic space. The Wigner rotation matrices (defined by Brink and Satchler2, for
example) introduced to characterise the rotation of a spherical harmonic may be decomposed
as Dl

mm′(α, β, γ) = e−imα dl
mm′(β) e−im′γ . This decomposition is exploited by factoring the

rotation into two separate rotations, both of which contain a constant ±π/2 polar rotation:
Rα,β,γ = Rα−π/2, −π/2, β R0, π/2, γ+π/2. By uniformly sampling and applying some algebra the
CSWT may be recast as

S[nα, nβ , nγ ] = e
−i2π[ nαlmax

Nα
+

nβlmax

Nβ
+

nγmmax
Nγ

]
Nα−1∑

j=0

Nβ−1∑

j′=0

Nγ−1∑

j′′=0

tj,j′,j′′ e
i2π[ jnα

Nα
+

j′nβ
Nβ

+
j′′nγ
Nγ

]
, (2)

where the summation is simply the unnormalised 3D inverse discrete Fourier transform of

tm+lmax,m′+lmax,m′′+mmax
= ei(m

′′−m)π/2
lmax∑

l=max(|m|,|m′|,|m′′|)

dl
m′m(π/2) dl

m′m′′(π/2) ψ̂lm′′
∗ ŝlm , (3)

where ·̂lm denote spherical harmonic coefficients, lmax andmmax define the general and azimuthal
band limits of the wavelet respectively and the shifted indices show the conversion between the
harmonic and Fourier conventions. The CSWT may be performed very rapidly in spherical
harmonic space by using fast Fourier techniques to rapidly and simultaneously evaluate (2),
once (3) is precomputed.a

aMemory and computational requirements may be reduced by a further factor of two for real signals by
exploiting the conjugate symmetry relationship t−m,−m′,−m′′ = t

∗

m,m′,m′′ .



Table 1: CSWT algorithm comparisons

Algorithm Complexity

Direct O(L4
Nγ )

Semi-fast O(L3 log2(L)Nγ)
Fast O(L3

Nγ )

(a) Complexity: Let the number of samples
of each parameter be of order L, except Nγ

which typically may be much lower.

Npix Execution time

(min:sec)

Direct Semi-fast Fast
768 00:01.19 00:01.12 00:00.01

3,072 00:18.60 00:17.38 00:00.04
12,288 05:01.48 04:43.06 00:00.21
786,432 - - 01:54.15

(b) Typical execution times: Tests performed on a
dual 900MHz processor system with 4GB of memory.

3.2 Comparison with other algorithms

Direct and semi-fast (where only one rotation is performed in Fourier space) implementations of
the CSWT are also possible. A comparison of the theoretical complexity and typical execution
times of each algorithm is presented in Table 1. The fast CSWT algorithm provides a saving of
O(

√
Npix) for Npix pixels on the sphere.

4 CMB non-Gaussianity analysis

We reproduce the Gaussianity analysis of Vielva et al.5, preprocessing the WMAP data in the
same manner. The resolution of the co-added map defined by Komatsu et al.3 is down-sampled
by a factor or 4, before the Kp0 exclusion mask is applied to remove emissions due to the
Galactic plane and known point sources.

4.1 Spherical wavelet analysis

The CSWT is a linear operation, hence the wavelet coefficients of a Gaussian map will also
obey a Gaussian distribution. To test for deviations from Gaussianity, skewness and kurtosis
statistics are calculated for each wavelet coefficient map at each scale. Monte Carlo simulations
are performed to construct confidence bounds on the test statistics.

The application of the Kp0 mask distorts coefficients corresponding to wavelets that overlap
with the mask exclusion region. These wavelet coefficients must be removed from any subse-
quent analysis. Our construction of an extended coefficient exclusion mask differs to that of
Vielva et al.5 and inherently accounts for the dominant distortion (either point-source or Galac-
tic plane) at each scale. The only non-zero coefficients in a CSWT of the original mask are those
that are distorted (due to the zero-mean property of spherical wavelets). These may be easily
detected and the coefficient exclusion mask extended accordingly.

4.2 Results

We reproduce the results of Vielva et al.5 for the spherical Mexican Hat wavelet analysis of the
co-added WMAP data. The Mexican Hat wavelet scales {ai}11

i=1 = {14, 25, 50, 75, 100, 150, 200,
250, 300, 400, 500}11

i=1 acrmin are considered, corresponding to an effective size of the sky of
ζi = 4 tan−1(ai/

√
2) ≈ 2

√
2 ai (defined as the angular separation between opposite zero-crossings).

Figure 1 shows the skewness and kurtosis of the coefficients at each scale. The wavelet anal-
ysis inherently allows one to localise signal components on the sky, as illustrated in Figure 2.
We make similar observations to Vielva et al.5, although the different coefficient exclusion masks
produce slight discrepancies. These discrepancies do not alter the general findings of the analysis.



(a) Skewness (b) Kurtosis

Figure 1: Spherical Mexican Hat wavelet coefficient statistics: Confidence regions derived from Monte Carlo
simulations are shown for 68% (red), 95% (orange) and 99% (yellow) levels, as is the mean (solid white line).

(a) Original coefficient map (b) Thresholded coefficient map

Figure 2: Spherical Mexican Hat wavelet coefficients at scale a8 = 250′: Those coefficients below
3 σ(a8) are thresholded to zero so that likely deviations from Gaussianity may be localised on the CMB sky.

5 Conclusions and future work

A fast algorithm is presented and evaluated for performing a directional CSWT on the sphere.
The fast implementation reduces the complexity of the CSWT by O(

√
Npix), where Npix is the

number of pixels on the sphere. Furthermore, the numerical accuracy of the CSWT is improved
by elegantly representing rotations in harmonic space.

The Gaussianity analysis of the WMAP 1-year data performed by Vielva et al.5 has been
reproduced and confirmed using the fast CSWT. We consider the extension to a full directional
analysis in an upcoming publication by McEwen et al.4; preliminary findings indicate deviations
from Gaussianity outside of the 99% confidence level.
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