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Abstract—Uncertainty quantification (UQ) is a critical missing compo-
nent in radio interferometric (RI) imaging that will only become increas-
ingly important as the big-data era of radio interferometry emerges.
Statistical sampling approaches to perform Bayesian inference, like
Markov Chain Monte Carlo (MCMC) sampling, can in principle recover
the full posterior distribution of the image, from which uncertainties can
then be quantified. However, for massive data sizes, it will be difficult
if not impossible to apply any MCMC technique due to its inherent
computational cost. We formulate Bayesian inference problems with
sparsity-promoting priors (motivated by compressive sensing), for which
we recover maximum a posteriori (MAP) point estimators of RI images
by convex optimisation. Exploiting recent developments in the theory of
probability concentration, uncertainties can also be quantified by post-
processing the recovered MAP estimate. In this work, we review two UQ
methodologies [1], [2] – respectively based on MCMC techniques and
MAP estimation – with application in RI imaging.

I. INTRODUCTION

Let y ∈ CM be the M visibilities acquired by a radio in-
terferometric (RI) telescope observed under a linear measurement
operator Φ ∈ CM×N modelling the acquisition of the sky brightness
distribution x (x = Ψa, where Ψ ∈ CN×L is a (wavelet) basis and
a, a sparse vector, represents the associated coefficients of x under
Ψ). Then, we have

y = Φx+ n, (1)

where n ∈ CM is the instrumental noise. In practice, y is only
observed partially or with limited resolution. Recovering the sky
intensity signal x from y according to equation (1) then amounts
to solving an ill-conditioned inverse problem [3].

The RI inverse problem (1) can be solved elegantly in the Bayesian
framework [1]. After combining the observed and prior information
using `2-norm (likelihood) and `1-norm (prior), the posterior distri-
bution p(x|y) can be obtained by using Bayes’ theorem, i.e.,

p(x|y) ∝ exp
{
−
(
µ‖Ψ†x‖1 + ‖y −Φx‖22/2σ2)}. (2)

In particular, it is often common practice to compute the maximum-
a-posteriori (MAP) estimator given by

xmap = argmin
x

{
µ‖Ψ†x‖1 + ‖y −Φx‖22/2σ2

}
. (3)

II. UNCERTAINTY QUALIFICATION (UQ) METHODOLOGIES

Let Cα ⊂ RN with α ∈ (0, 1) be a posterior credible region –
here we consider the highest posterior density (HPD) region [1] –
with confidence level 100(1 − α)%, where p(x ∈ Cα|y) = 1 − α.
Two ways can be used to find/estimate the HPD region Cα: one
is using the MCMC samples [1] obtained by sampling the posterior
distribution in (2), the other is based on the MAP estimation [2] given
in (3). Moreover, these two different ways motivated us to develop
two UQ methodologies, shown in Figs. 1 and 2, respectively.

The light green areas in Figs. 1 and 2 on the right show the
types of UQ developed. Firstly, full posterior samples (from which
a point estimator say x∗ can also be generated by e.g. using the
sample mean) and an MAP estimator are obtained by using MCMC
techniques and convex optimisation techniques, respectively. Then,
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Fig. 1. UQ methodology I: procedure based on MCMC techniques [1].
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Fig. 2. UQ methodology II: procedure based on MAP estimation [2].

various forms of UQ are performed. After HPD credible regions
and its approximation (C′α) are computed, they are then used to
compute local credible intervals (cf. error bars), namely (ξ−, ξ+),
corresponding to individual pixels and superpixels, and to perform
hypothesis testing of image structure to test whether a structure is
physical or an artefact.

A brief summary in performance is: methodology I is able to
provide benchmark results but is computationally expensive; method-
ology II is a trustworthy approximation and is approximately 105

times faster computationally than methodology I, and therefore will
scale to big-data (like those anticipated from SKA); refer to [1], [2]
and references therein for more details.
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