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Sparse image reconstruction on the sphere:
analysis and synthesis

Christopher G. R. Wallis, Yves Wiaux and Jason D. McEwen

Abstract—We develop techniques to solve ill-posed inverse
problems on the sphere by sparse regularisation, exploiting
sparsity in both axisymmetric and directional scale-discretised
wavelet space. Denoising, inpainting, and deconvolution prob-
lems, and combinations thereof, are considered as examples.
Inverse problems are solved in both the analysis and synthesis
settings, with a number of different sampling schemes. The most
effective approach is that with the most restricted solution-
space, which depends on the interplay between the adopted
sampling scheme, the selection of the analysis/synthesis problem,
and any weighting of the `1 norm appearing in the regularisation
problem. More efficient sampling schemes on the sphere improve
reconstruction fidelity by restricting the solution-space and also
by improving sparsity in wavelet space. We apply the technique
to denoise Planck 353 GHz observations, improving the ability
to extract the structure of Galactic dust emission, which is
important for studying Galactic magnetism.

Index Terms—Harmonic analysis, sampling, spheres, rotation
group, Wigner transform.

I. INTRODUCTION

SPHERICAL images arise in many fields, from cosmology
(e.g. [1]) to biomedical imaging (e.g. [2]), where inverse

problems are often encountered. Sparse priors have proved
highly effective in regularising Euclidean inverse problems,
where sparsity is imposed in a wavelet space or sparsifying
dictionary. In the spherical setting, wavelet theory is only
recently starting to approach maturity, while a mature, general,
and robust framework for sparse regularisation is lacking.

Over the last couple of decades there have been many
developments regarding wavelet theory in spherical settings.
Many initial attempts to extend wavelet transforms to the
sphere differed primarily in the manner in which dilations are
defined on the sphere [3]–[13]. These constructions were es-
sentially based on continuous methodologies, which, although
insightful, limited practical application to problems where the
exact synthesis of a function from its wavelet coefficients
is not required. A number of early discrete constructions
followed [14]–[18]; however, many of these constructions do
not necessarily lead to stable bases [19]. More recently, a
number of discrete wavelet frameworks have emerged that
have found considerable application, particularly in cosmology
(e.g. [20]–[23]), including needlets [24]–[26]; scale-discretised
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wavelets [27]–[33]; and the isotropic undecimated and pyrami-
dal wavelet transforms [34]. All three of these approaches have
also been extended to analyse signals defined on the three-
dimensional ball formed by augmenting the sphere with the
radial line [35]–[39], such as the galaxy distribution.

Solving Euclidean inverse problems by imposing sparse
regularising priors has become increasingly popular in recent
years. This trend has been driven by improving theoretical
foundations for the recovery of sparse signals, facilitated by
the theory of compressive sensing [40]–[42], and empirical
results that have demonstrated the effectiveness of sparse
priors for wide classes of natural images. Sparse reconstruction
problems can be posed in either the synthesis or analysis
settings [43]. In the synthesis setting, the sparse (e.g. wavelet)
coefficients of the signal are recovered, from which the signal
is synthesised. In the analysis setting, although sparsity is im-
posed in some sparsifying (e.g. wavelet) dictionary, the signal
is recovered directly. When the dictionary considered is not
an orthonormal basis but a redundant dictionary, the synthesis
and analysis approaches exhibit quite different properties since
the solution-space of the analysis problem is more restrictive
than the synthesis problem [43]–[45]. Empirical studies have
shown promising results for the analysis setting (e.g. [43], [46],
[47]), which is hypothesised to be due to its more restrictive
solution-space.

Some progress has been made towards solving sparse reg-
ularisation problems on the sphere (e.g. [48]–[50]). Compres-
sive sensing for signals sparse in spherical harmonic space is
considered in [49], while inpainting problems are considered
in [48], [50], imposing sparsity in a redundant dictionary [48]
and the signal gradient [50].

In this work we consider general linear inverse problems on
the sphere, including denoising, inpainting, and deconvolution
problems, and combinations thereof, and apply sparse regu-
larising priors in scale-discretised wavelet space, using both
axisymmetric and directional wavelets [27]–[30]. Moreover,
for the first time we study in detail the properties and empirical
performance of the analysis and synthesis problems on the
sphere. Furthermore, we investigate the impact of sampling
theorems and schemes on the sphere [51]–[53] for sparse
image recovery, which have already been shown to play a
significant role [50]. In particular, we study the impact of
the efficiency of sampling schemes in both the synthesis and
analysis settings.

While sparse regularisation is often very effective, we close
this introduction by cautioning against the blind application
of sparse priors. For example, for the cosmic microwave
background (CMB), which is to very good approximation a
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realisation of a Gaussian random field on the sphere, we recall
that inpainting by imposing sparsity in spherical harmonic
space (via the `1 norm) has the undesirable property of
breaking statistical isotropy [54]. One must therefore take care
in applying priors appropriate for the problem at hand.

The remainder of the article is structured as follows. In
Sec. II we review harmonic analysis on the sphere S2 and
rotation group SO(3) and associated sampling theorems and
schemes. In Sec. III we present the general framework to solve
inverse problems on the sphere using sparse reconstruction. In
Sec. IV we study sparse image reconstruction on the sphere
through numerical experiments, comparing the analysis and
synthesis settings and evaluating the impact of the sampling
scheme used. In Sec. V we apply the methods proposed to
denoise the Planck 353 GHz data. In Sec. VI we conclude.

II. SAMPLING ON THE SPHERE AND ROTATION GROUP

In this section we review the representation of signals on the
sphere and the rotation group, in both the spatial and harmonic
domains. We consider discretised signals, sampled according
to different sampling schemes and sampling theories, that
differ in the number of samples required to capture all of the
information content of signals.

A. Signals on the Sphere

We consider the space of square integrable functions defined
on the sphere S2. The canonical basis for the space of square
integrable functions on the sphere is given by the spherical
harmonics Y`m ∈ L2(S2), with natural ` ∈ N, integer m ∈
Z and |m| ≤ `. Due to the orthogonality and completeness
of the spherical harmonics, any square integrable function on
the sphere x ∈ L2(S2) may be represented by its spherical
harmonic expansion

x(ω) =

∞∑
`=0

∑̀
m=−`

x`m Y`m(ω) , (1)

where the spherical harmonic coefficients are given by the
usual projection onto each basis function:

x`m = 〈x, Y`m〉 =

∫
S2

dΩ(ω) x(ω) Y ∗`m(ω) , (2)

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure
on the sphere and ω = (θ, ϕ) denote spherical coordinates
with colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π). Complex
conjugation is denoted by the superscript ∗. Throughout, we
consider signals on the sphere band-limited at L, that is signals
such that x`m = 0, ∀` ≥ L, in which case the summation over
` in Eq. (1) may be truncated to the first L terms.

In the discrete setting we can write the forward and inverse
spherical harmonic transforms as linear operators, respectively:

x̂ = Ỹx, (3)
x = Yx̂, (4)

where Ỹ ∈ CL2×NS2 and Y ∈ CNS2×L
2

, with NS2 denoting
the number of samples on the sphere required to capture all
the information content of a signal band limited at L. We

denote the concatenated vector of NS2 spatial measurements
by x ∈ CNS2 and the concatenated vector of L2 harmonic
coefficients by x̂ ∈ CL2

. Here and throughout we denote
the forward harmonic transform with a tilde and the inverse
transform without. Since sampling theorems on the sphere do
not reach optimal dimensionality, as discussed in more detail
below, the operators Ỹ and Y are not necessarily inverses of
one another, e.g. YỸ 6= I (although we note ỸY = I, where I
is the identity).

When considering images on the sphere the sampling theo-
rem adopted can be of great significance. A sampling theorem
allows one to transform from real space to harmonic space
and back, without loss of information, from a finite number
of samples NS2 . Sampling theorems on the sphere differ in
the number of samples NS2 required. No existing sampling
theorem on the sphere achieves the optimal number of samples
of L2 suggested by the harmonic dimensionality of a band-
limited signal. The canonical Driscoll & Healy [51] sampling
theorem on the sphere (hereafter DH) requires ∼ 4L2 samples
to capture the information content of a signal band-limited
at L. Recently, McEwen and Wiaux [52] (hereafter MW)
developed a novel sampling theorem requiring ∼ 2L2 samples
only, thereby reducing the spherical Nyquist sampling rate by
a factor of two. More recently, Khalid, Kennedy and McEwen
[53] developed a new sampling scheme (hereafter KKM) that
achieves the optimal number of L2 samples. However, this
scheme does not lead to a sampling theorem with theoreti-
cally exact spherical harmonic transforms; nevertheless, good
numerical accuracy is achieved in practice.

Fast algorithms to compute spherical harmonic transforms,
which avoid any pre-computation1, have been developed for
the DH and MW sampling theorems, which scale as O(L3)
[51], [52], [55]. The complexity of the fast algorithm for
the KKM sampling schemes scales as O(L4), which can be
reduced by appealing to algorithms to perform fast matrix-
vector multiplications, thereby reaching close to O(L3) in
practice [53].

Alternative sampling schemes also exist (e.g. HEALPix
[56], IGLOO [57], GLESP [58]), although these are typically
oversampled and the accuracy of numerical quadrature can
in some cases be limited (e.g. HEALPix). Finite rate of
innovation schemes to recover signals on the sphere comprised
of a number of Dirac delta functions have also been developed
[59]–[61]. However, such super-resolution approaches cannot
be applied to recover general signals on the sphere. In this
article we focus on efficient sampling schemes for general
band-limited signals, which are also highly accurate (with
accuracy close to machine precision): namely, the KKM [53],
MW [52] and DH [51] schemes.

B. Signals on the Rotation Group

When considering directional wavelets it is necessary to be
able to decompose and reconstruct square integrable signals
defined on the rotation group SO(3), the space of three-
dimensional rotations, where rotations are parameterised by

1Precompute quickly becomes infeasible for high band-limits due to O(L3)
storage requirements [52].
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the Euler angles ρ = (φ, θ, ψ), with φ ∈ [0, 2π), θ ∈ [0, π] and
ψ ∈ [0, 2π). We adopt the zyz Euler convention corresponding
to the rotation of a physical body in a fixed coordinate system
about the z, y and z axes by ψ, θ and φ, respectively.

The Wigner D-functions D`
mn ∈ L2(SO(3)), with natural

` ∈ N and integer m,n ∈ Z, |m|, |n| ≤ `, are the matrix
elements of the irreducible unitary representation of the ro-
tation group SO(3) [62]. Consequently, the D`∗

mn also form
an orthogonal basis in L2(SO(3)).2 Due to the orthogonality
and completeness of the Wigner D-functions, any square
integrable function on the rotation group x ∈ L2(SO(3)) may
be represented by its Wigner expansion

x(ρ) =

∞∑
`=0

2`+ 1

8π2

∑̀
m=−`

∑̀
n=−`

x`mnD
`∗
mn(ρ) , (5)

where the Wigner coefficients are given by the projection onto
each basis function:

x`mn = 〈x, D`∗
mn〉, (6)

=

∫
SO(3)

d%(ρ) x(ρ)D`
mn(ρ) , (7)

where d%(ρ) = sin θ dθ dφ dψ is the usual invariant measure
on the rotation group. Note that 〈·, ·〉 is used to denote inner
products over both the sphere and the rotation group (the case
adopted can be inferred from the context). Throughout, we
consider signals on the rotation group band-limited at L, that
is signals such that x`mn = 0, ∀` ≥ L, in which case the
summation over ` in Eq. (5) may be truncated to the first L
terms.

In the discrete setting we can write the forward and inverse
Wigner transforms as linear operators, respectively:

x̂ = D̃x (8)
x = Dx̂, (9)

where D̃ ∈ CL(4L2−1)/3×NSO(3) and D ∈
CNSO(3)×L(4L2−1)/3, with NSO(3) denoting the number
of samples on the rotation group required to capture all
the information content of a signal band-limited at L.
The harmonic dimensionality of a band-limited signal on
the rotation group reads L(4L2 − 1)/3. We denote the
concatenated vector of NSO(3) spatial measurements by
x ∈ CNSO(3) and the concatenated vector of harmonic
coefficients by x̂ ∈ CL(4L2−1)/3. Again, we denote the
forward harmonic transform with a tilde, and the inverse
transform without, and note that the operators D̃ and D are
not necessarily inverses of one another.

For signals with limited directional sensitivity, it is con-
venient to consider a directional band-limit N , such that
x`mn = 0, ∀n ≥ min(N, `). In settings where the adopted
band-limit (i.e. resolution) is not clear from the context, we
adorn D̃ and D with superscripts denoting the spherical and
directional band-limits adopted, e.g. D̃

L,N
.

Sampling theorems on the rotation group can be constructed
from a straightforward extension of sampling theorems defined

2We adopt the conjugate D-functions as basis elements since this conven-
tion simplifies connections to wavelet transforms on the sphere.

on the sphere. Kostelec et al. [63] extend the DH sampling
theorem, leading to a sampling theorem on the rotation group
requiring ∼ 8L3 samples. McEwen et al. [64] extend the
MW sampling theorem, leading to sampling theorem requiring
∼ 4L3 samples. The KKM sampling scheme has not yet been
extended to the rotation group.3 No sampling theorem on the
rotation group reaches the optimal harmonic dimensionality
of ∼ 4L3/3. We adopt the sampling theorem on the rotation
group of McEwen et al. [64] in this work, where fast algo-
rithms are developed to compute forward and inverse Wigner
transforms that scale as O(NL3).

III. SPARSE IMAGE RECONSTRUCTION ON THE SPHERE

We develop the proposed framework to solve inverse prob-
lems on the sphere in this section. We begin by reviewing
wavelet transforms on the sphere, before presenting a discrete,
operator formulation that illuminates the adjoint operators
of the wavelet transform. Sparse regularisation problems on
the sphere are then posed, in both analysis and synthesis
settings, before the properties of these problems are discussed,
along with algorithmic details for solving the problems, which
require fast adjoint operators.

A. Wavelet Analysis and Synthesis

We adopt the scale-discretised wavelet transform on the
sphere [27], [28], [30], [33], which supports directional
wavelets. The wavelet transform is given by the directional
convolution of each wavelet, Ψj ∈ L2(S2), with the signal of
interest, x ∈ L2(S2):

wj(ρ) = 〈x,RρΨj〉 (10)

=

∫
S2
dΩ(ω′)x(ω′)(RρΨj)∗(ω′), (11)

where wavelet coefficients wj ∈ L2(SO(3)) incorporate direc-
tional information and so are defined on the rotation group.
Rρ is the rotation operator that rotates by the Euler angles
ρ. Wavelets are considered for a range of scales j, which
runs from Jmin to Jmax. For further details on the wavelet
construction and transform see, e.g., [30], [33]. The lowest
frequency content of the signal of interest is extracted by the
axisymmetric convolution of a scaling function, Υ ∈ L2(S2),
with the function of interest:

s(ω) = 〈x,RωΥ〉 (12)

=

∫
S2
dΩ(ω′)x(ω′)(RωΥ)∗(ω′), (13)

where scaling coefficients s ∈ L2(S2) are defined on the
sphere since low-frequency directional structure is not typ-
ically of interest. In harmonic space these directional and
axisymmetric convolutions read, respectively,(

wj
)`
mn

=
8π2

2`+ 1
x`mΨj∗

`n, (14)

s`m =

√
4π

2`+ 1
x`mΥ∗`0, (15)

3Note that sampling schemes on the sphere and rotation group based on
Gauss-Legendre quadrature have also been developed (e.g. [52], [65]).
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(see, e.g., [30]), where (wj)`mn = 〈wj , D`∗
mn〉, s`m = 〈s, Y`m〉,

Ψj
`n = 〈Ψj , Y`n〉 and Υ`0δm0 = 〈Υ, Y`m〉, where δnm is the

Kronecker delta function.
The original image on the sphere can be reconstructed from

its wavelet and scaling coefficients by

x(ω) =

∫
S2

dΩ(ω′) s(ω′) (Rω′ Υ)(ω)

+

Jmax∑
j=Jmin

∫
SO(3)

d%(ρ) wj(ρ) (Rρ Ψj)(ω) , (16)

provided the wavelets and scaling function satisfy an admis-
sibility criterion [27], [28], [30], [33]. In harmonic space,
reconstruction reads

x`m =

√
4π

2`+ 1
s`m Υ`0

+

Jmax∑
j=Jmin

∑̀
n=−`

(
wj
)`
mn

Ψj
`n. (17)

In practice, for directional wavelet transforms we consider
wavelets with an azimuthal band-limit N , i.e. Ψj

`n = 0,
∀n ≥ min(N, `), which implies the directional wavelet coeffi-
cients wj also exhibit a directional band-limit N . Furthermore,
directional wavelets with even or odd azimuthal symmetry are
typically considered, in which case only N (rather than 2N−1)
directions are required [27], [30], [33].

B. Discrete Wavelet Analysis and Synthesis

We formulate discrete, operator representations of the for-
ward and inverse wavelet transforms that permit a clear
construction of the adjoint wavelet operators. We consider
the harmonic representation of the wavelet transform, which
is inherently discretised, where we concatenate the harmonic
coefficients into a single vector. The wavelet transform can be
represented by its action on harmonic coefficients, followed
by inverse harmonic transforms. A similar represententation
is formulated for the inverse wavelet transform. By formu-
lating wavelet transforms as a concatenation of operators, it
is straightforward to construct operators representing adjoint
wavelet transforms, which are required for solving sparse
regularisation problems.

The harmonic expressions for the wavelet transform given
by Eq. (14) and Eq. (15) may be written in terms of linear
operators:

ŵj = NjWjx̂, (18)
ŝ = Sx̂, (19)

where ŵj denotes Wigner coefficients of the wavelet coef-
ficients wj and ŝ denotes spherical harmonic coefficients of
the scaling coefficients s. The operators Wj ∈ CNj(Lj)2×L2

and S ∈ CL2
s×L

2

implement harmonic space multiplication by
the wavelet Ψj∗

`n and scaling function Υ∗`0, respectively, as
described by Eq. (14) and Eq. (15), where the ` normalisation
factor is not included in the former but is included in the latter
(Lj and N j are defined in detail below). The normalisation for
the wavelets, given by 8π2/(2`+1), is applied by the operator

Nj ∈ RNj(Lj)2×Nj(Lj)2 . We separate out the normalisation in
this case as it does not apply in the reconstruction of the signal
seen in Eq. (17).

Harmonic space representations of wavelet and scaling
coefficients are represented at the minimum resolution required
to capture all signal content. Thus, the band-limit for each
wavelet scale j is limited to Lj and for the scaling function to
Ls. Wavelet Ψj has support in the range [λj−1, λj+1], where
λ ∈ R is a scaling parameter that defines the scale dependance
of each wavelet (for a standard dyadic scaling λ = 2), while
the scaling function Υ has support in the range ` < λJmin

(see [27], [28], [30], [33] for further details). Consequently,
Lj = λj+1 and Ls = λJmin . The azimuthal band limit of a
wavelet scale is limited by the overall azimuthal band limit or
the band limit of that scale, therefore N j = min(N,Lj).

We collect the harmonic representation of all wavelet and
scaling coefficients in a single vector:

α̂ =
[
ŝ†, (ŵJmin)†, (ŵJmin+1)†, . . . , (ŵJmax)†

]†
(20)

= [S†, (NJminWJmin)†, (NJmin+1WJmin+1)†,

. . . , (NJmaxWJmax)†]†x̂ (21)
= NWx̂, (22)

where ·† denotes the Hermitian transpose or
adjoint, N = diag(ILs

,NJmin ,NJmin+1, . . . ,NJmax), and
W = diag(S,WJmin ,WJmin+1, . . . ,WJmax). The collection
of scaling and wavelet coefficients can be calculated from
their harmonic representations by a series of inverse spherical
harmonic and Wigner transforms by

α =
[
s†, (wJmin)†, (wJmin+1)†, . . . , (wJmax)†

]†
(23)

= Hα̂, (24)

where H = diag(Y,DJmin ,DJmin+1, . . . ,DJmax).
The forward wavelet transform, denoted by the operator

Ψ̃, can then be expressed by the concatenation of operators
defined above, yielding

α = Ψ̃x = HNWỸx. (25)

In other words, the wavelet transform Ψ̃ is composed of a
spherical harmonic transform Ỹ, harmonic wavelet multipli-
cation W, harmonic normalisation N, and inverse spherical
harmonic and Wigner transforms H.

The inverse wavelet transform, denoted by the operator Ψ
can be represented in a similar manner. Firstly, we note the
spherical harmonic and Wigner coefficients of the wavelet and
scaling coefficients can be calculated by a series of forward
harmonic transforms by

α̂ = H̃α, (26)

where H̃ = diag(Ỹ, D̃
Jmin

, D̃
Jmin+1

, . . . , D̃
Jmax

). From
Eq. (25), the inverse wavelet transform reads

x = Ψα = Y(NW)−1H̃α = YW†H̃α, (27)

where the final equality follows by noting (NW)−1 = W†,
which can be inferred from Eq. (17), which in turn follows
by the wavelet admissibility criterion. In other words, the
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Fig. 1. Test images of Earth topographic data constructed to be band-limited
at L = 32 (top) and L = 128 (bottom). These images constitute the ground
truth in our numerical experiments. Here and subsequently data on the sphere
are displayed using the Mollweide projection, with zero values shown in black,
unit values shown in yellow, and the colour of intermediate values interpolated
between these extremes.

inverse wavelet transform Ψ is composed of forward spher-
ical harmonic and Wigner transforms H̃, harmonic wavelet
multiplication and summation W†, and an inverse spherical
harmonic transform Y.

C. Adjoints of Discrete Wavelet Analysis and Synthesis

The operator descriptions of the forward and inverse wavelet
transforms formulated in the previous subsection permit a
straightforward construction of the adjoint operators, which
are required to solve inverse problems on the sphere when
imposing sparsity in wavelet space. From Eq. (25), the wavelet
transform operator reads Ψ̃ = HNWỸ, with corresponding
adjoint:

Ψ̃
†

= Ỹ
†
W†NH†, (28)

where we have noted that N is self-adjoint, i.e. N† = N.
From Eq. (27), the inverse wavelet transform operator reads
Ψ = YW†H̃, with corresponding adjoint:

Ψ† = H̃
†
WY†. (29)

In the discrete setting, recall that the adjoint and inverse op-
erators are not equivalent, i.e. Ỹ

†
6= Y, H̃

†
6= H, and Ψ̃

†
6= Ψ.

Consequently, for practical application, fast algorithms must be
developed to compute not only forward transforms and their
inverses but also the adjoints of both the forward and inverse
transforms. This has been performed already [50] for the
spherical harmonic transforms of the MW sampling theorem
[52], i.e. to apply Ỹ

†
and Y†. To apply directional wavelets,

we also require fast algorithms to compute adjoint Wigner
transforms. In Appendix A, we develop fast algorithms to
compute D̃

†
and D† for the Wigner transforms corresponding

to the sampling theorem on the rotation group of [64].

D. Sparse Regularisation

We consider linear, ill-posed inverse problems defined on
the sphere, including, for example, denoising, inpainting, and
deconvolution problems. Consider M measurements y ∈ RM
of the signal on the sphere x ∈ RNS2 , acquired according to
the measurement equation

y = Φx+ n, (30)

where Φ ∈ RM×NS2 is the measurement operator and n ∈ RM
is measurement noise, assumed to be Gaussian, i.e. n ∼
N (0, σ), where σ = ‖x̂‖2 × 10(−SNR/20), where SNR is in
dB. For example, the measurement operator Φ may model the
beam or point-spread function of a sensor (in a deconvolution
problem) or a masking of the signal (in an inpainting problem).

We regularise the spherical ill-posed inverse problem of
Eq. (30) by promoting sparsity in wavelet space by posing
synthesis and analysis problems on the sphere. The synthesis
problem reads

α? = arg min
α
‖α‖1 s.t. ‖y −ΦΨα‖2 < ε, (31)

where the signal is then recovered from its wavelet coefficients
by x? = Ψα?. The analysis problems reads

x? = arg min
x
‖Ψ̃x‖1 s.t. ‖y −Φx‖2 < ε, (32)

where we recover the signal x? directly.4

The `1 norm appearing in the sparsity constraint must be
defined appropriately for the spherical setting [50], as dis-
cussed in more detail below. The square of the residual noise
follows a scaled χ2 distribution with M degrees of freedom,
i.e. ‖y −Ψx?‖22 ∼ σ2χ2(M). Consequently, we choose ε to
correspond to a given percentile of the χ2 distribution [50].

When solving the synthesis and analysis problems of
Eq. (31) and Eq. (32) we are free to choose different sampling
schemes (e.g. KKM, MW, DH sampling). In Euclidean space,
the analysis problem has shown promising results in empirical
studies, which we recall is hypothesised to be due to the
more restrictive solution-space of the analysis setting. This
relationship between the size of the solution-space and the
analysis and synthesis settings does not in general carry
over to the spherical setting since on the sphere sampling
is not typically optimal. Consequently, recovering the signal
directly in the analysis setting does not necessarily lead to the
most restrictive solution-space. The most restrictive solution-
space depends on the interplay between the adopted sampling
scheme, the selection of the analysis/synthesis problem, and
any weighting of the `1 norm, which is made explicit in the
following subsection.

E. Algorithmic Details

The `1 norm appearing in Eq. (31) and Eq. (32) must
be defined appropriately for the spherical setting, taking into

4Our framework can be applied to spin s ∈ Z signals on the sphere
(see e.g. [52]) in a straightforward manner, noting that the spin wavelet
transform of [30] can be represented by the operators sΨ̃ = sHNWsỸ and
Ψ = sYW†

sH̃, where the forward and inverse scalar spherical harmonic
transforms are replaced by spin versions, e.g. replacing Y by sY.
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account the sampling scheme adopted. In [50], where the
total variation (TV) norm is considered, the associated discrete
TV norm is weighted by the exact quadrature weights of the
sampling theorem adopted in order to approximate the contin-
uous norm. Through numerical experiments we have found
the `1 norm, and the solution of the sparse reconstruction
problems, to be relatively insensitive to the exact form of
weights: provided weights capture the area of each pixel the
underlying continuous norm is well approximated and it is not
necessary to use exact quadrature weights.5 Consequently, for
all sampling schemes we adopt the following weights for the
wavelet and scaling coefficients, respectively, corresponding to
scale j and pixel p:

vjp =
(λj)η∑
`m |Ψ

j
`m|2

4π3 sin θp

njφn
j
θn
j
ψ

, (33)

up =
1∑

`m |Υ`m|2
2π2 sin θp

njφn
j
θ

, (34)

where njφ, njθ and njψ are the number of samples in the φ, θ
and ψ directions, θp is the θ coordinate of the sample p, and
η ∈ R+ is a decay parameter.

The weights approximate the area of each pixel, normalised
by the energy of the wavelet and scaling function for the
given scale j. Furthermore, for the weighting of wavelet
coefficients the additional factor (λj)η is introduced. The
term λj corresponds to the middle harmonic multipole ` to
which the wavelet Ψj is sensitive, while η is introduced as
a free parameter to incorporate prior knowledge of natural
signals, i.e. to control the wavelet decay imposed as a prior
when solving the sparse regularisation problems. Increasing η
promotes large scale features by increasing the weight applied
to small wavelet scales, thereby increasing their penalty to
the `1 norm. Moreover, for the synthesis setting, increasing η
reduces the effective size of the solution-space.

We use the Douglas-Rachford (DR) [67] splitting algorithm
to solve the sparse regularisation problems posed in Sec. III-D.
The Douglas-Rachford algorithm [67] is based on a splitting
approach that requires the computation of two proximity
operators. In our case, one proximity operator is based on
the `1 norm and the other on the data fidelity constraint. The
adaptation of the DR algorithm to the sphere is discussed
further in [50]. The DR algorithm requires the adjoint of the
operators that appear in the problem specification, e.g. the
adjoint sparsifying operators shown in Eq. (28) and Eq. (29).
In numerical experiments, if inverse operators are used in
place of the adjoints, we have seen convergence failures.
In [50], fast adjoints for the spherical harmonic transform
corresponding to the MW sampling scheme [52] were dervied.
In an analogous manner, we derive in Appendix A fast adjoints
for the Wigner transforms of [64]. These efficient adjoints have
a numeric complexity of order NL3 compared to the naive
adjoint operations which have complexity of order N2L4. The
power method is used to calculate the norms of the operators
(required when solving the optimisation problems).

5Accounting for the area of each pixel in the definition of the `1 norm is
similar to the zeroth order `1 norm approximation for functions defined on
general manifolds considered in [66].

IV. NUMERICAL EXPERIMENTS

We perform numerical experiments to both assess the effec-
tiveness of imposing sparsity in wavelet space and to test the
impact of the sampling scheme used and whether or not the
problem is solved in the analysis or synthesis setting.

We compare the analysis and synthesis settings for the
KKM, DH and MW sampling schemes. These experiments
are performed at low resolution as fast adjoint transforms
for the DH and KKM sampling theorems are lacking. We
chose to solve a noisy inpainting problem for these tests
(as an example of a common inverse problem). At high
resolution we demonstrate image reconstruction with both
axisymmetric and directional wavelet sparsity priors using
MW sampling (for which we have constructed fast adjoint
operators). We test the method at high resolution on inpainting
and deconvolution problems, and a combined inpainting and
deconvolution problem, all in the presence of noise.

We generate low and high resolution test images from
Earth topography data. The original Earth topography data
are taken from the Earth Gravitational Model (EGM2008)
publicly released by the U.S. National Geospatial-Intelligence
Agency (NGA) EGM Development Team.6 The ground truth
for the low and high resolution experiments performed in the
remainder of this section are shown in Fig. 1.

Much of the work in this section takes advantage of publicly
available codes: we use SSHT7 [52] and NSHT8 [53] to
compute spherical harmonic transforms; SO39 [64] to compute
harmonic transforms on the rotation group; S2LET10 [28], [30]
to compute wavelet transforms on the sphere; and SOPT11 [47]
to solve inverse problems.

The main code used to perform these experiments was not
optimised and significant parts are run in serial in the high
level language MATLAB. The runtimes for this naive im-
plementation were as follows: the low resolution experiments
described in Section IV-A take approximately 30 seconds for
the MW sampling, 1 minute for the DH sampling, and 1
hour for the KKM sampling. The high resolution experiments
performed with the MW sampling described in Section IV-B
take around 10 minutes. All experiments were performed on
a MacBook Pro (early 2015), with a 2.9 GHz Intel Core i5
processor and 16 GB of RAM.

A. Low Resolution Axisymmetric Experiments

We first solve a simple inpainting problem at low resolution
(L = 32) using axisymmetric wavelets (N = 1). In this case
the measurement operator in Eq. (30) is,

Φ = ΦIP ∈ RM×NS2 , (35)

and represents a uniformly random masking of the spherical
image, with one non-zero, unit value on each row specifying

6These data were downloaded from http://geoweb.princeton.edu/people/
simons/DOTM/Earth.mat and extracted using the tools available at http:
//geoweb.princeton.edu/people/simons/software.html.

7http://www.spinsht.org or http://astro-informatics.github.io/ssht (v1.0b1)
8http://www.zubairkhalid.org/nsht.html (0.9b)
9http://www.sothree.org or http://astro-informatics.github.io/so3 (v1.2b1)
10http://www.s2let.org or http://astro-informatics.github.io/s2let (v2.2b2)
11http://basp-group.github.io/sopt/ (v2.0)

http://geoweb.princeton.edu/people/simons/DOTM/Earth.mat
http://geoweb.princeton.edu/people/simons/DOTM/Earth.mat
http://geoweb.princeton.edu/people/simons/software.html
http://geoweb.princeton.edu/people/simons/software.html
http://www.spinsht.org
http://astro-informatics.github.io/ssht
http://www.zubairkhalid.org/nsht.html
http://www.sothree.org
http://astro-informatics.github.io/so3
http://www.s2let.org
http://astro-informatics.github.io/s2let
http://basp-group.github.io/sopt/
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KKM Analysis, M/L2 = 0.3 (15.8) M/L2 = 0.5 (25.8) M/L2 = 1.0 (64.3)

KKM Synthesis, M/L2 = 0.3 (20.8) M/L2 = 0.5 (28.5) M/L2 = 1.0 (54.6)

MW Analysis, M/L2 = 0.3 (5.2) M/L2 = 0.5 (8.9) M/L2 = 1.0(18.8) M/L2 = 1.9(59.8)

MW Synthesis, M/L2 = 0.3 (26.2) M/L2 = 0.5 (31.9) M/L2 = 1.0 (42.0) M/L2 = 1.9 (76.4)

DH Analysis, M/L2 = 0.3 (1.7) M/L2 = 0.5 (3.16) M/L2 = 1.0 (6.6) M/L2 = 1.9 (16.0)

DH Synthesis, M/L2 = 0.3 (26.1) M/L2 = 0.5 (31.2) M/L2 = 1.0 (41.7) M/L2 = 1.9 (62.8)
Fig. 2. Reconstructed images from the low resolution inpainting experiment described in Sec. IV-A. The first two rows show the reconstruction using KKM
sampling when solving the analysis and synthesis problems, respectively. The third and fourth rows are solutions to the same problems with MW sampling,
and fifth and sixth rows correspond to DH sampling. Each column corresponds to a different number of measurements. The SNR for each image is giving in
brackets in dB. The synthesis setting generally out-performs the analysis setting, while sampling schemes that require fewer samples generally out perform
those requiring more samples.

the location of the measured datum. The adjoint of the operator
can be calculated trivially. Measurements are taken according
to Eq. (30) with noise included corresponding to a signal-to-
noise-ratio (SNR) of 46 dB, where SNR = 20 log(‖x̂‖2/‖x̂∗−
x̂‖2), defined in harmonic space to avoid differences due to
the number of samples of each sampling scheme. We vary
the number of measurements taken as M = NmL

2, where
Nm = [0.3, 0.5, 1.0, 1.5, 1.9]. We run these experiments for
each of the sampling schemes we consider, specifically the
KKM, MW and DH sampling schemes.

Results can be seen in Fig. 2. The improvement given by
the lower number of samples of the KKM or MW sampling
schemes can be seen clearly. There is also typically an
improvement when solving Eq. (31), the synthesis problem, as
opposed to Eq. (32), the analysis problem. We set η = 2.5 (as
we do for the remainder of the article unless otherwise stated),
since this was shown to be the value resulting in the recon-
structions of the highest SNR, although it should be noted that

the resulting SNR was very similar for 2.5 < η < 4.5 when
an emperical investigation was conducted. In Fig. 3 we show
the average SNR for 10 reconstructions, which supports the
findings inferred from Fig. 2. These experiments were repeated
on another data set from a different domain (natural light probe
images) with similar results.

B. High Resolution Experiments

We run three example high resolution (L = 128) experi-
ments on the high resolution Earth map shown in Fig. 1. We
solve all the problems with the MW sampling in the synthesis
setting with η = 2.5. We consider the MW sampling as there
are currently no fast adjoint algorithms for the other sampling
theorems and for the synthesis setting as it was shown to be
superior in Sec. IV-A

We consider both axisymmetric wavelets (N = 1) and
directional wavelets with N = 4 which leads to wavelets with
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Fig. 3. Reconstruction performance averaged over 10 realisations for the
DH (red diamonds), MW (blue circles) and KKM (green stars) sampling
schemes, when solving the low resolution inpainting problem in the analysis
setting (dashed lines) and the synthesis setting (solid lines). The KKM and
MW sampling schemes provide enhancements in reconstruction quality when
compared to the DH sampling scheme. The synthesis setting is shown to be
generally superior to the analysis setting.

odd azimuthal symmetry. Firstly, we solve a simple inpainting
problem with a measurement operator given by Eq. (35), with
Nm = 1.0. Secondly, we consider a deconvolution problem,
where the measurement operator is

Φ = ΦCV ∈ CNS2×NS2 (36)
= YGỸ, (37)

where G ∈ RL2×L2

is a diagonal matrix whose elements are,

G`m`′m′ = e−`
2σ2

δ``′δmm′ , (38)

where σ = π/L. Thirdly we solve the combined problem,

Φ = ΦIPΦCV. (39)

We consider measurement noise with SNR of 46 dB.
We show the results of these experiments and a band

limited version of the measured data in Fig. 4. The SNR
of the recovered images are encouragingly high, showing
a good similarity with the ground truth. The deconvolution
problem shows minor visual artefacts in the axisymmetric
wavelet case. The visual artefacts are reduced in the directional
setting for the two problems involving deconvolution, however
SNRs are slightly lower. The inpainting problem visually
shows a marked improvement in the directional case over the
axisymmetric case, as also illustrated by the improved SNR.

V. DENOISING Planck 353 GHZ DATA

The Planck satellite observed the entire sky at a range of
microwave frequencies [1], yielding high resolution maps of
the polarised Galactic dust emission from its high frequency
polarised channel centred on 353 GHz and total intensity
maps at even higher frequencies from other channels [68].
One of the many uses of these maps is the study of the
Galactic magnetic field, where it is important to have high
SNR maps of the clumps of dust in the Galaxy. It is common

practise to smooth the data with a Gaussian kernel in order to
suppress the high frequency noise [69]. This smoothing has the
undesirable effect of not denoising large scales and, perhaps
more damaging, removing important structure on small scales.
Here we examine the use of sparsity in wavelet space as a prior
to denoise the Planck 353GHz total intensity map.

The Planck 353 GHz data is available to download12 in
HEALPix13 format [56]. We use the HEALPix software to
compute the spherical harmonic coefficients of this spherical
image. We then band limit these to L = 2048 and use
SSHT [52] to obtain a MW sampled image of the sphere.
This is taken as our input data to then be denoised and
can be seen in Fig. 5. An estimate of the noise level is
made by downloading the noise maps from the same archive,
performing the same operation, and averaging the noise over
all of the sky. This leads to an initial estimate of ε, which is
subsequently optimised through experimentation.

We solve the denoising problem in the synthesis setting
with measurement operator set to the identity and using the
axisymmetric wavelets (N = 1). We set η = 3.0 but have
found the specific value have little effect on the reconstruction.
Fig. 6 shows the original map, the result from denoising and
a smoothed map. The smoothed map is the original map
convolved with a 5 arcmin kernel to replicate the current
denoising techniques adopted. It is clear the noise is reduced
by our sparse denoising approach, while preserving small scale
structure.

VI. CONCLUSIONS

We develop a general framework to solve image recon-
struction problems on the sphere by sparse regularisation,
minimising the `1 norm of wavelet coefficient representations
of spherical images. By developing fast adjoint operators,
we recover convergence guarantees for the resulting convex
optimisation problems. As examples, we have demonstrated
that using our framework one can solve denoising, inpainting,
and deconvolution problems effectively, and combinations
thereof.

We study and compare the analysis and synthesis settings
for solving inverse problems on the sphere for the first
time. The analysis problem has shown promising results in
Euclidean space, hypothesised to be due to its more restrictive
nature. However, the more restrictive nature of the analysis
framework in Euclidean space does not carry over to the
spherical setting. The most restrictive solution-space on the
sphere depends on the interplay between the adopted sampling
scheme, the selection of the analysis/synthesis problem, and
any weighting of the `1 norm. We examine a variety of
sampling schemes on the sphere, including the DH [51] and
MW [52] sampling theorems (leading to theoretically exact
spherical harmonic transforms) and the KKM [53] sampling
scheme (leading to approximate but highly accurate spherical
harmonic transforms). DH, MW and KKM sampling requires
∼ 4L2, ∼ 2L2, and L2 samples, respectively.

12These data can be found at http://pla.esac.esa.int/pla/#maps. We use the
353 GHz full mission data.

13http://healpix.sourceforge.net/

http://pla.esac.esa.int/pla/#maps
http://healpix.sourceforge.net/
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Acquired Data Recovered Image Axisymmetric Recovered Image Directional

(a) Inpainting

(b) Deconvolution

(c) Inpainting and deconvolution
Fig. 4. Reconstructed images from the high resolution experiments described in Sec. IV-B. All problems are solved in the synthesis setting using MW
sampling. Each solution is presented next to a band limited representation of the measured data. The SNR of the reconstructions are (a) 57.1 dB, (b) 51.8 dB
and (c) 50.8 dB for the axisymmetric wavelets and (a) 58.4 dB, (b) 48.5 dB and (c) 48.5 dB for the directional wavelets. For the inpainting problem directional
wavelets yield superior performance, while for the deconvolution and joint inpainting and deconvolution problems the SNR recovered with axisymmetric
wavelets is superior, albeit visual artefacts are mitigated when using directional wavelets.

Fig. 5. Acquired data of the 353 GHz Planck total intensity map. A full
description of how this data was aquired can be found in Sec. V. The regions
highlighted are shown in more detail in Figure 6.

To examine the analysis and synthesis problems and the
impact of the various sampling schemes considered, we study
results from a simple inpainting problem at low resolution. In
the numerical results shown in Fig. 2 and Fig. 3 we find that
the synthesis setting typically out-performs the analysis setting
for suboptimal sampling schemes. Moreover, reconstruction fi-
delity is enhanced further by adopting more efficient sampling
schemes that require fewer samples to capture the information
content of signals on the sphere. These findings are robust to
the choice of test signal.

We hypothesise that differences between the analysis and
synthesis settings on the sphere are due to restrictions of the
solution-space. Elad et al. [43] showed theoretically and with

simulations that there are fundamental differences between the
analysis and synthesis settings due to the solution-spaces. As
in Euclidean space, we find settings with a more restricted
solution-space yield superior performance. In contrast to Eu-
clidean space, it is the synthesis setting rather than the analysis
setting that typically results in a more restrictive solution-space
on the sphere. This is due to the inefficiency of spherical
sampling schemes and the weighting introduced in the `1
norm. Since the KKM sampling exhibits the optimal number of
samples on the sphere there is no appreciable different between
the size of the solution-spaces of the analysis and synthesis
problems and the fidelity of spherical images recovered by
the analysis and synthesis approaches are similar. In addition,
the sparsity of band-limited signals is further promoted by
more efficient sampling schemes when considering a sparse
representation that captures spatial localisation [50], such as
wavelets.

We also demonstrate solving inverse problems in a number
of high resolution settings, facilitated by our fast adjoint
operators. We solve inpainting, deconvolution, and combined
inpainting and deconvolution problems, all in the presence
of noise, using both axisymmetric and directional wavelets.
For all inverse problems considered our sparse regularisation
techniques yield excellent reconstruction fidelity.

Our framework for solving inverse problems on the sphere
can be applied to many real-world problems. We have shown
that our framework can be used to effectively denoise 353 GHz
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Acquired Data Recovered Image Smoothed Image

Fig. 6. Results from denoising the Planck 353 GHz total intensity map. The left column shows the acquired data, the middle column shows the denoised
data and the right column shows the data denoised by smoothing with a 5 arcmin Gaussian kernel (the standard approach [69]). Each plot shows a zoomed
region of the sphere. The acquired data shown here is a zoom in of that shown in Fig. 5, the top figure is the blue region and the bottom figure is the green
region.

channel observations from the Planck satellite, which will be
useful for studying Galactic magnetic fields.
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APPENDIX

Standard convex optimisation methods require not only the
application of the operators that appear in the optimisation
problem but also their adjoints. Moreover, these methods are
typically iterative, necessitating repeated application of each
operator and its adjoint. Thus, to solve optimisation problems
that incorporate Wigner transform operators fast algorithms to
apply both the operator and its adjoint are required to render
high-resolution problems computationally feasible.

Here we develop fast algorithms to perform adjoint forward
and adjoint inverse Wigner transforms for the extension of
the MW sampling scheme to the rotation group [64]. The
fast adjoint follows by taking the adjoint of each stage of
the fast standard transforms [64] and applying these in reverse
order. The forward and inverse transforms can be found in [64,
Sec. 3]. Here we use notation consistent with that work, where
∆`
m′m = D`

mn(0, π/2, 0). The fast adjoint of the forward
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transform is as follows:

G†mnm′ = i−(m−n)
L−1∑
`=0

∆`
m′m ∆`

m′n f
`
mn , (40)

G̃†mnm′′ = (2π)2
L−1∑

m′=−(L−1)

G†mnm′ w(m′ −m′′) ,

(41)

G̃†mn(βb) =
1

2L− 1

L−1∑
m′=−(L−1)

G̃†mnm′e
im′βb (42)

F †mn(βb) =


G̃†mn(βb) + (−1)m+nG̃†mn(−βb) ,

b ∈ {0, 1, . . . , L− 2}
G̃†mn(βb) , b = L− 1

(43)

f†(αa, βb, γg) =
1

(2M − 1)(2N − 1)
N−1∑

n=−(N−1)

M−1∑
m=−(M−1)

F †mn(βb)e
i(mαa+nγg).

(44)

Similarly, the fast adjoint of the inverse transform is as follows:

f̃(αa, βb, γg) =

{
f(αa, βb, γg), t ∈ {0, 1, . . . , L− 1}
0 , t ∈ {L, . . . , 2L− 2}

, (45)

F †mnm′ =

2M−2∑
a=0

L−1∑
b=0

2N−2∑
g=0

f̃(αa, βb, γg)e
−i(mαa+nβb+m

′γg)

(46)

f `†mn = i−(n−m)
L−1∑

m′=−(L−1)

2`+ 1

8π2
∆`
m′m ∆`

m′n F
†
mnm′ . (47)

These fast adjoint algorithms scale as O(NL3) (where
N � L ∼M ) and are implemented in the SO3 code.
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