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ABSTRACT

We describe S2LET, a fast and robust implementation of the scale-discretised wavelet transform on the sphere. Wavelets are con-
structed through a tiling of the harmonic line and can be used to probe spatially localised, scale-dependent features of signals on the
sphere. The reconstruction of a signal from its wavelets coefficients is made exact here through the use of a sampling theorem on the
sphere. Moreover, a multiresolution algorithm is presented to capture all information of each wavelet scale in the minimal number of
samples on the sphere. In addition S2LET supports the HEALPix pixelisation scheme, in which case the transform is not exact but
nevertheless achieves good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab, IDL
and Java. Real signals can be written to and read from FITS files and plotted as Mollweide projections. The S2LET code is made
publicly available, is extensively documented, and ships with several examples in the four languages supported. At present the code
is restricted to axisymmetric wavelets but will be extended to directional, steerable wavelets in a future release.
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1. Introduction

Signals defined or measured on the sphere arise in numerous
disciplines, where analysis techniques defined explicitly on the
sphere are now in common use. In particular, wavelets on the
sphere (Antoine & Vandergheynst 1998, 1999; Baldi et al. 2009;
Marinucci et al. 2008; McEwen et al. 2006; Narcowich et al.
2006; Starck et al. 2006a; Wiaux et al. 2006, 2005, 2007, 2008;
Yeo et al. 2008) have been applied very successfully to problems
in astrophysics and cosmology, where data-sets are increasingly
large and need to be analysed at high resolution in order to con-
front accurate theoretical predictions (e.g. Barreiro et al. 2000;
Basak & Delabrouille 2012; Cayón et al. 2001; Deriaz et al.
2012; Labatie et al. 2012; Lan & Marinucci 2008; McEwen et al.
2006, 2007a,b, 2008; Pietrobon et al. 2008; Starck et al. 2006b;
Schmitt et al. 2010; Vielva et al. 2004, 2006a,b, 2007; Wiaux
et al. 2006, 2008).

While wavelet theory is well established in Euclidean space
(see e.g. Daubechies 1992), multiple wavelet frameworks have
been developed on the sphere, only a fraction of which lead to
exact transforms in both the continuous and discrete settings.
In fact, discrete methodologies (Schröder & Sweldens 1995;
Sweldens 1996, 1997) achieve exactness in practice but may not
lead to a stable basis on the sphere (Sweldens 1997). In the con-
tinuous setting several constructions are theoretically exact, and
have been combined with sampling theorems on the sphere to
enable exact reconstruction in the discrete setting also. In par-

ticular, scale-discretised wavelets (Wiaux et al. 2008) lean on
a tiling of the harmonic line to yield an exact wavelet trans-
form in both the continuous and discrete settings. In the axisym-
metric case, the scale-discretised wavelets reduce to needlets
(Narcowich et al. 2006; Baldi et al. 2009; Marinucci et al.
2008), which were developed independently using an analogous
tiling of the harmonic line. Similarly, the isotropic undecimated
wavelet transform (UWT) developed by (Starck et al. 2006a) ex-
ploits B-splines of order 3 to cover the harmonic line with filters
with greater overlap but nevertheless compact support.

In this paper we describe the new publicly available S2LET1

code to perform the scale-discretised wavelet transform of com-
plex signals on the sphere. At present S2LET is restricted to
axisymmetric wavelets (i.e. azimuthally symmetric when cen-
tred on the poles) and includes generating functions for axisym-
metric scale-discretised wavelets (Wiaux et al. 2008), needlets
(Narcowich et al. 2006; Baldi et al. 2009; Marinucci et al. 2008)
and B-spline wavelets (Starck et al. 2006a). We intend to ex-
tend the code to directional, steerable wavelets and spin func-
tions in a future release. The core routines of S2LET are written
in C, exploit fast algorithms on the sphere, and have interfaces in
Matlab, IDL and Java.

We note that many very useful public codes are already
available to compute wavelet transforms on the sphere, includ-
ing isotropic undecimated wavelet, ridgelet and curvelet trans-

1 http://www.s2let.org/
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forms2 (Starck et al. 2006a), invertible filter banks3 (Yeo et al.
2008), needlets (NeedATool4; Pietrobon et al. 2010) and scale-
discretised wavelets (S2DW5; Wiaux et al. 2008). S2LET aims
primarily to provide a fast and flexible implementation of the
scale-discretised transform with exact reconstruction on the
sphere using the sampling theorem of McEwen & Wiaux (2011),
although it has also been extended to support some of the fea-
tures of these other codes. Furthermore, particular attention has
been paid in the development of S2LET to prove a user-friendly
code, supporting multiple programming languages, and which is
extensively documented.

The remainder of this article is organised as follows. In sec-
tion 2 we detail the construction of scale-discretised axisym-
metric wavelets and the corresponding exact scale-discretised
wavelet transform on the sphere. In section 3 we describe the
S2LET code, including implementation details, computational
complexity and numerical performance. We present a number of
simple examples using S2LET in section 4, along with the code
to execute them. We conclude in section 5.

2. Wavelets on the sphere

We review the construction of scale-discretised wavelets on the
sphere through tiling of the harmonic line (Wiaux et al. 2008).
Directional, steerable wavelets were also considered by Wiaux
et al. (2008), however we restrict our attention to axisymmet-
ric wavelets here. Furthermore, the use of a sampling theorem
on the sphere guarantees that spherical harmonic coefficients
capture all the information content of band-limited signals, re-
sulting in theoretically exact harmonic and wavelet transforms.
One may alternatively adopt samplings of the sphere for which
exact quadrature rules do not exist, such as HEALPix (Górski
et al. 2005), but which nevertheless exhibit other useful proper-
ties, leading to numerically accurate but not theoretically exact
transforms.

2.1. Harmonic analysis on the sphere

The spherical harmonic decomposition of a square integrable
signal f ∈ L2(S 2) on the two-dimensional sphere S 2 reads

f (ω) =

∞∑
`=0

∑̀
m=−`

f`mY`m(ω), (1)

where Y`m are the spherical harmonic functions, which form the
canonical orthogonal basis on S 2. The spherical harmonic co-
efficients f`m, with ` ∈ N and m ∈ Z such that |m| ≤ `, form
a dual representation of the signal f in the harmonic basis on
the sphere. The angular position ω = (θ, φ) ∈ S 2 is specified
by colatitude θ ∈ [0, π] and longitude φ ∈ [0, 2π). The spherical
harmonic coefficients are given by

f`m = 〈 f |Y`m〉 =

∫
S 2

dΩ(ω) f (ω)Y∗`m(ω), (2)

with the surface element dΩ(ω) = sin θdθdφ. We consider band-
limited signals in the spherical harmonic basis, with band-limit
L if f`m = 0, ∀` ≥ L. For band-limited signals sampling theo-
rems can be invoked so that both forward and inverse transforms

2 http://jstarck.free.fr/mrs.html
3 https://sites.google.com/site/yeoyeo02
4 http://www.fisica.uniroma2.it/˜pietrobon/
5 http://www.spinsht.org/

can be reduced to finite summations that are theoretically exact.
Sampling theorems effectively encode a quadrature rule for the
exact evaluation of integrals on the sphere from a finite set of
sampling nodes. Various sampling theorems exist in the litera-
ture (e.g. Driscoll & Healy 1994; Healy et al. 1996; McEwen
& Wiaux 2011). In this work we adopt the McEwen & Wiaux
(2011) sampling theorem (hereafter MW), which is based on an
equiangular sampling scheme and, for a given band-limit L, re-
quires the lowest number of samples on the sphere of all sam-
pling theorems, namely (L − 1)(2L − 1) + 1 ∼ 2L2 samples (for
comparison ∼ 4L2 samples are required by Driscoll & Healy
(1994)). Fast algorithms to compute the corresponding spherical
harmonic transform scale as O(L3) and are numerically stable to
band-limits of at least L = 4096 (McEwen & Wiaux 2011). The
GLESP pixelisation scheme (Doroshkevich et al. 2005) also pro-
vides a sampling theorem based on the Gauss-Legendre quadra-
ture, and could be used in place of the MW sampling theo-
rem. However, GLESP uses more samples than Gauss-Legendre
quadrature requires, which may lead to an overhead when con-
sidering large band-limits and numerous wavelet scales. We fo-
cus on the MW sampling scheme to obtain a theoretically exact
transform. Alternative sampling schemes that are not based on
sampling theorems also exist such as HEALPix (Górski et al.
2005), which is supported by S2LET, MRS and Needatool.
HEALPix does not lead to exact transforms on the sphere but
the resulting approximate transforms nevertheless achieve good
accuracy and benefit from other practical advantages, such as
equal-area pixels.

2.2. Scale-discretised wavelets on the sphere

The scale-discretised wavelet transform allows one to probe spa-
tially localised, scale-dependent content in the signal of interest
f ∈ L2(S 2). The j-th wavelet scale WΨ j

∈ L2(S 2) is defined as
the convolution of f with the wavelet Ψ j ∈ L2(S 2):

WΨ j
(ω) ≡ ( f ? Ψ j)(ω) ≡ 〈 f |RωΨ j〉

≡

∫
S 2

dΩ(ω′) f (ω′)(RωΨ j)∗(ω′), (3)

where ∗ denotes complex conjugation. Convolution on the sphere
is defined by the inner product of f with the rotated wavelet
RωΨ j. We restrict our attention to axisymmetric wavelets, i.e.
wavelets that are azimuthally symmetric when centred on the
poles. Consequently, the rotation operator Rω is parameterised
by angular position ω = (θ, φ) only and not also orientation6. For
the axisymmetric case the spherical harmonic decomposition of
WΨ j

is then simply given by a weighted product in harmonic
space:

WΨ j

`m =

√
4π

2` + 1
f`mΨ

j∗
`0, (4)

where WΨ j

`m = 〈WΨ j
|Y`m〉, f`m = 〈 f |Y`m〉 and Ψ

j
`0δm0 = 〈Ψ j|Y`m〉,

and where δm0 is the Kronecker delta symbol.
The wavelet coefficients extract the detail information of

the signal only; a scaling function and corresponding scaling
coefficients must be introduced to represent the low-frequency
(low-`), approximate information of the signal. The scaling co-
efficients WΦ ∈ L2(S 2) are defined by the convolution of f with

6 As already noted, the extension to directional scale-discretised
wavelets has been derived by Wiaux et al. (2008). At present the S2LET
code supports axisymmetric wavelets only; directional wavelets will be
added in a later release.
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the scaling function Φ ∈ L2(S 2):

WΦ(ω) ≡ ( f ? Φ)(ω) = 〈 f |RωΦ〉, (5)

or in harmonic space,

WΦ
`m =

√
4π

2` + 1
f`mΦ∗`0, (6)

where WΦ
`m = 〈WΦ|Y`m〉 and Φ`0δm0 = 〈Φ|Y`m〉.

Provided the wavelets and scaling function satisfy an admis-
sibility property (defined below), the function f may be recon-
structed exactly from its wavelet and scaling coefficients by

f (ω) =

∫
S 2

dΩ(ω′)WΦ(ω′)(Rω′Φ)(ω)

+

J∑
j=J0

∫
S 2

dΩ(ω′)WΨ j
(ω′)(Rω′Ψ j)(ω), (7)

or equivalently in harmonic space by

f`m =

√
4π

2` + 1
WΦ
`mΦ`0 +

√
4π

2` + 1

J∑
j=J0

WΨ j

`mΨ
j
`0. (8)

The parameters J0, J define the lowest and highest scales j of
the wavelet decomposition and must be defined consistently to
extract and reconstruct all the information content of f . These
parameters depend on the construction of the wavelets and scal-
ing function and are defined explicitly in the next paragraphs.
The admissibility condition under which a band-limited func-
tion f can be decomposed and reconstructed exactly is given by
the following resolution of the identity:

4π
2` + 1

|Φ`0|
2 +

J∑
j=J0

|Ψ
j
`0|

2

 = 1, ∀`. (9)

We are now in a position to define wavelets and a scaling
function that satisfy the admissibility property. In this paper,
we use the smooth generating functions defined by Wiaux et al.
(2008) in order to tile the harmonic line. Alternative definitions
are also supported by S2LET, as presented at the end of this sec-
tion. Consider the C∞ Schwartz function with compact support
on [−1, 1]:

s(t) ≡
{

e−
1

1−t2 , t ∈ [−1, 1]
0, t < [−1, 1]

, (10)

for t ∈ R. We introduce the positive real parameter λ ∈ R+
∗ to

map s(t) to

sλ(t) ≡ s
(

2λ
λ − 1

(t − 1/λ) − 1
)
, (11)

which has compact support in [1/λ, 1]. We then define the
smoothly decreasing function kλ by

kλ(t) ≡

∫ 1
t

dt′
t′ s2

λ(t′)∫ 1
1/λ

dt′
t′ s2

λ(t′)
, (12)

which is unity for t < 1/λ, zero for t > 1, and is smoothly
decreasing from unity to zero for t ∈ [1/λ, 1]. We finally define
the wavelet generating function by

κλ(t) ≡
√

kλ(t/λ) − kλ(t) (13)

and the scaling function generating function by

ηλ(t) ≡
√

kλ(t). (14)

The wavelets and scaling function are constructed from their
generating functions to satisfy the admissibility condition given
by Eqn. (9). A natural approach is to define Ψ

j
`m from the gener-

ating functions κλ to have support on [λ j−1, λ j+1], yielding

Ψ
j
`m ≡

√
2` + 1

4π
κλ

(
`

λ j

)
δm0. (15)

For these wavelets Eqn. (9) is satisfied for ` ≥ λJ0 , where J0 is
the lowest wavelet scale used in the decomposition. The scaling
function Φ is constructed to extract the modes that cannot be
probed by the wavelets (i.e. modes with ` < λJ0 ):

Φ`m ≡

√
2` + 1

4π
ηλ

(
`

λJ0

)
δm0. (16)

To satisfy exact reconstruction, J is set to ensure the
wavelets reach the band-limit of the signal of interest, yielding
J = dlogλ(L − 1)e. The choice of the lowest wavelet scale J0 is
arbitrary, provided that 0 ≤ J0 < J. The wavelets and scaling
function may then be reconstructed on the sphere through an in-
verse spherical harmonic transform. The harmonic tiling and real
space representation of these wavelets are shown in Figure 1 and
Figure 2 respectively.

In addition to the scale-discretised generating functions
(Wiaux et al. 2008), S2LET also supports the needlet functions
(Marinucci et al. 2008)7, which yield a similar tiling of the har-
monic line, as shown in Figure 1. The B-spline filters used to
construct the isotropic undecimated wavelet transform (Starck
et al. 2006a) are also supported, as also shown in Figure 1.8 With
these three constructions, the wavelets and scaling functions are
well-localised both spatially on the sphere and also in harmonic
space. Consequently, the associated wavelet transforms on the
sphere can be used to extract spatially localised, scale-dependent
features in signals of interest.

3. The S2LET code

In this section we describe the S2LET code. We first introduce
a multiresolution algorithm to capture each wavelet scale in the
minimum number of samples on the sphere, which follows by
taking advantage of the reduced band-limit of the wavelets for
scales j < J − 1. This multiresolution algorithm reduces the
computation cost of the transform considerably. We then pro-
vide details of the implementation, the computational complex-
ity and the numerical accuracy of the scale-discretised wavelet
transform supported in S2LET. We finally outline planned fu-
ture extensions of the code.

7 In our implementation of needlets we use a scaling function to rep-
resent the approximate information in the signal, which is not always
included (e.g., NeedAtool; Pietrobon et al. 2010).

8 For the B-spline-based construction to probe approximately the
same scales as the scale-discretised and needlet ones, we defined the
generating functions as

kλ(t) =
3
2

B3(2
tλJ−1

L
) (17)

B3(x) =
1

12
(|x − 2|3 − 4|x − 1|3 + 6|x|3 − 4|x + 1|3 + |x + 2|3), (18)

so that the jth filter has (compact) support [0, L/λJ− j−2] and peaks at
the same scales as the j-th scale-discretised and needlet filters obtained
with the same parameters.
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(a) Tiling of the harmonic line

`

Φ`0 Ψ2
`0 Ψ3

`0 Ψ4
`0

Ψ5
`0

(b) Angular profiles of the scaling function and the first wavelets

Φ(θ, φ = 0) Ψ2(θ, φ = 0) Ψ3(θ, φ = 0)

θ θ θ

Fig. 1: Wavelets and scaling function constructed with the scale-
discretised (SD), needlet and B-spline generating functions
(Wiaux et al. 2008; Marinucci et al. 2008; Starck et al. 2006a)
with parameters λ = 3 and J0 = 2 and for band-limit L = 128.
The tiling is shown in the top panel, and the profiles of the re-
constructed wavelets in the bottom panel.

Φ(ω) Ψ2(ω) Ψ3(ω)

Ψ4(ω) Ψ5(ω)

Fig. 2: Wavelets for scales j ∈ {2, 3, 4, 5} and scaling function
constructed through a tiling of the harmonic line using scale-
discretised functions, with parameters λ = 3 and J0 = 2 and
for band-limit L = 128. This plot was produced with a Matlab
demo included in S2LET.

3.1. Multiresolution algorithm

In harmonic space, the wavelet coefficients are simply given by
the weighted product of the spherical harmonic coefficients of f
and the wavelets, as expressed in Eqn. (4). Although the wavelet
coefficients can be analysed at the same resolution as the sig-
nal f (i.e., at full resolution), by construction they have differ-
ent band-limits for different scales j, as shown in Figure 1. The
reconstruction can thus be performed at lower resolution, with-
out any loss of information if a sampling theorem is used. This

approach yields a multiresolution algorithm where the wavelet
coefficients are reconstructed with the minimal number of sam-
ples on the sphere: the j-th wavelet coefficients have band-limit
k = λ j+1 when using the scale-discretised and needlet ker-
nels, and k = L/λJ− j−2 when using the B-splines. When the
MW sampling theorem is used, the wavelets are recovered on
(k − 1)(2k − 1) + 1 samples on the sphere. This approach leads
to significant improvements in terms of speed and memory use
compared to the full-resolution case, as shown in the next sec-
tion. Figure 3 illustrates the use of the full-resolution and mul-
tiresolution transforms on a map of Earth topography data with
the scale-discretised filters and the MW scheme. When adopting
the HEALPix sampling of the sphere, multiresolution can also
be used. However HEALPix does not rely on a sampling theo-
rem and therefore the resolution for the reconstruction of each
wavelet scale must be chosen heuristically and adapted to the
desired accuracy. For example, in the MRS code (Starck et al.
2006a) it is chosen such that N j

side = k/2. More detail on the
accuracy of the wavelet transform with HEALPix are provided
below.

3.2. Implementation

The core numerical routines of S2LET are implemented in C.
By adopting a low level programming language such as C for
the implementation of the core algorithms, computational effi-
ciency is optimised. The C library includes the full-resolution
and multiresolution wavelet transforms, with specific optimisa-
tions for real signals in order to take advantage of all symme-
tries of the spherical harmonic transform. The wavelet transform
is computed in harmonic space through Eqn. (4) and Eqn. (6),
for the input parameters (L, λ, J0). To reconstruct signals on the
sphere, by default S2LET uses the exact spherical harmonic
transform of the MW sampling theorem (McEwen & Wiaux
2011) implemented in the SSHT9 code. In this case all trans-
forms are theoretically exact and one can analyse and synthesise
real and complex signals at floating-point precision. S2LET has
been extended to also support the HEALPix sampling scheme,
in which case the transform is not theoretically exact but never-
theless achieves good numerical accuracy.

We provide interfaces for the C library in three languages:
Matlab, IDL and Java. The Matlab and IDL codes also
include routines to read/write signals on the sphere stored in ei-
ther HEALPix FITS10 files or the FITS file format used to
stored MW sampled signals. In addition, functionality to plot the
Mollweide projection of real signals for both MW or HEALPix
samplings is included. The Java interface includes an object-
oriented representation of sampled maps, spherical harmonics
and wavelet transforms. All routines and interfaces are well doc-
umented and illustrated with several examples for both the MW
and HEALPix samplings. These examples cover multiple com-
binations of parameters and types of signals. S2LET requires
SSHT, which implements fast and exact algorithms to perform
the forward and inverse spherical harmonic transforms corre-
sponding to the MW sampling theorem (McEwen & Wiaux
2011). SSHT in turn requires the FFTW11 package for the com-
putation of fast Fourier transforms. The fast spherical harmonic
transforms implemented in SSHT compute Wigner functions,
and thus the spherical harmonic functions, through efficient re-
cursion using either the method of Trapani & Navaza (2006)

9 http://www.spinsht.org/
10 http://fits.gsfc.nasa.gov/
11 http://www.fftw.org/
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(a) Full-resolution scale-discretised wavelet transform

(b) Multiresolution scale-discretised wavelet transform

Fig. 3: Scale-discretised wavelet transform of a band-limited to-
pography map of the Earth for λ = 3, J0 = 2 and L =
128, i.e. with the scale-discretised wavelets shown in Figure 2.
The wavelet transform decomposes the band-limited signal
into wavelet coefficients that extract spatially localised, scale-
dependent features. Since the wavelets for different scales j
have different band-limits, the wavelet coefficients can be re-
constructed at lower resolution on the sphere for lower scales
j. Panel (a) shows the full-resolution wavelet transform of the
topography map. The original Earth topography map is shown
in the top-left plot, the scaling coefficients are shown in the top-
right plot, while the wavelet coefficients at scales j ∈ {2, 3, 4, 5}
are shown left-to-right, top-to-bottom respectively in the remain-
ing plots. Panel (b) shows the same decomposition but using the
multiresolution algorithm. The signals shown in panel (b) con-
tain the same information as in panel (a) but represented in the
minimal number of samples on the sphere. These plots were
produced by one of the many Matlab demos provided with
S2LET.

or Risbo (1996). Here we present results using the recursion of
Risbo (1996). The fast spherical harmonic transform algorithms
implemented in SSHT scale as O(L3) (McEwen & Wiaux 2011).

Although primarily intended to perform the scale-discretised
wavelet transform of Wiaux et al. (2008), S2LET also supports
the needlet and spline-based wavelet transforms developed by
Marinucci et al. (2008) and Starck et al. (2006a). As shown

in Figure 1, these generating functions yield the same num-
ber of wavelet scales (for the parameter choices described pre-
viously). However, with the scale-discretised and needlet gen-
erating functions the j-th wavelet scale has compact support
in [λ j−1, λ j+1], whereas the support is much wider with the
B-splines, i.e. [0, L/λJ− j−2] in the S2LET implementation. As
a consequence, when using the multiresolution algorithm the
wavelet coefficients must be captured on a greater number of
pixels than with the scale-discretised or needlet kernels, while
probing approximately the same scales, as shown in Figure 1.

The complexity of the axisymmetric wavelet transform is
dominated by spherical harmonic transforms since the wavelet
transforms are computed efficiently in harmonic space, through
Eqn. (4) and Eqn. (6) for the forward transform and through
Eqn. (8) for the inverse transform. Given a band-limit L and
wavelet parameters (λ, J0), recall that the maximum scale is
given by J = dlogλ(L − 1)e and hence the wavelet transform
(forward or inverse) involves (J − J0 + 3) spherical harmonic
transforms (one for the original signal, one for the scaling coef-
ficients and (J − J0 + 1) for the wavelet coefficients). If the scal-
ing coefficients and all wavelet coefficients are reconstructed at
full-resolution in real space, the axisymmetric wavelet transform
scales as O((J − J0 + 3)L3). However, in the previous section we
established a multiresolution algorithm that takes advantage of
the reduced band-limit of the wavelets for scales j < J − 1. With
the multiresolution algorithm with a sampling theorem, only the
finest wavelet scales j ∈ {J − 1, J} are computed at maximal res-
olution corresponding to the band-limit of the signal. The com-
plexity of the overall multiresolution wavelet transform is then
dominated by these operations and effectively scales as O(L3).

3.3. Numerical validation

We first evaluate the performance of S2LET in terms of accu-
racy and complexity using the MW sampling theorem, for which
all transforms are theoretically exact. We show that S2LET
achieves floating-point precision and scales as detailed in the
previous section.

We consider band-limits L = 2i with i ∈ {2, . . . , 10} and gen-
erate sets of spherical harmonic coefficients f`m following in-
dependent Gaussian distributions N(0, 1). We then perform the
wavelet decomposition and reconstruct the harmonic coeffi-
cients, denoted by f rec

`m . We evaluate the accuracy of the trans-
form using the error metric ε = max | f`m − f rec

`m |, which is the-
oretically zero since all signals are band-limited by construc-
tion. The complexity is quantified by observing how the com-
putation time tc = [tsynthesis + tanalysis]/2 scales with band-limit,
where the synthesis and analysis computation times are speci-
fied by tsynthesis and tanalysis respectively. Since we evaluate the
wavelet transform in real space, a preliminary step is required to
reconstruct the signal f from the randomly generated f`m. This
step is not included in the computation time since its only pur-
pose is to generate a valid band-limited test signal on the sphere.
The analysis then denotes the decomposition of f into wavelet
coefficients WΨ j

and scaling coefficients WΦ on the sphere. The
synthesis refers to recovering the signal f rec from these coeffi-
cients. The final step, which is not included in the computation
time either, is to decompose f rec into harmonic coefficients f rec

`m
in order to compare them with f`m. The stability of both ε and tc
is checked by averaging over hundreds of realisations of f`m for
L = 2i with i ∈ {2, . . . , 8} and a few realisations with i ∈ {9, 10}.
The results proved to be very stable, i.e. the variances of the er-
ror and timing metrics are lower than 5%. Recall that for given

5
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(a) Numerical accuracy of the wavelet transform
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(b) Computation time of the wavelet transform

Fig. 4: Numerical accuracy and computation time of the scale-
discretised wavelet transform computed with S2LET. We con-
sider L = 2i with i ∈ {2, . . . , 10}, with parameters λ = 2, J0 = 0.
These results are averaged over many realisations of random
band-limited signals and were found to be very stable. The scale-
discretised transform is either performed at full-resolution (solid
lines) or with the multiresolution algorithm (dashed lines). Very
good numerical accuracy is achieved by both the full-resolution
and multiresolution algorithms (which achieve indistinguishable
accuracy), with numerical errors comparable to floating-point
precision, found empirically to scale as O(L) as shown by the
red line in panel (a). Computation time scales as O(L3) for both
algorithms as shown by the red line in panel (b), in agreement
with theory. The multiresolution algorithm is four to five times
faster than the full-resolution approach for the band-limits con-
sidered.

band-limit L the number of samples on the sphere required by
the exact quadrature is (2L − 1)(L − 1) + 1. All tests were run
on an Intel 2.0GHz Core i7 processor with 8GB of RAM. On
this machine, precision of floating point numbers is of the or-
der of ∼ 10−16, and errors are expected to add up and accu-
mulate when considering linear operations such as the spheri-
cal harmonic and wavelet transforms. The accuracy and timing
performance of the scale-discretised wavelet transform imple-
mented in S2LET are presented in Figure 4. S2LET achieves
very good numerical accuracy, with numerical errors compara-
ble to accumulated floating-point errors only12. Moreover, the
full-resolution and multiresolution algorithms are indistinguish-
able in terms of accuracy. However, the latter is four to five times
faster than the former for the band-limits considered since only
the wavelet coefficients for j ∈ {J − 1, J} are computed at full-
resolution. As shown in Figure 4, computation time scales as
O(L3) for both algorithms, in agreement with theory.

12 The GLESP sampling adopted in MRS also achieves floating point
accuracy, although using many more pixels to capture the wavelet scales
due to the greater band-limits of the spline-based kernels and the over-
sampling of the GLESP scheme.

max | f`m − f rec
`m | L = Nside/2 L = Nside L = 2Nside L = 3Nside

0 iteration ∼ 10−6 ∼ 10−4 ∼ 10−2 ∼ 10−1

1 iterations ∼ 10−10 ∼ 10−7 ∼ 10−3 ∼ 10−1

2 iterations ∼ 10−14 ∼ 10−10 ∼ 10−5 ∼ 10−1

3 iterations ∼ 10−14 ∼ 10−13 ∼ 10−6 ∼ 10−1

4 iterations ∼ 10−14 ∼ 10−14 ∼ 10−7 ∼ 10−1

Table 1: Order of magnitude of the accuracy of the HEALPix
spherical harmonic transform, averaged over the parameter Nside.

S2LET can also be used with HEALPix, in which case the
accuracy of the spherical harmonic transform is critical to the ac-
curacy of the wavelet transform (since HEALpix does not rely
on a sampling theorem it does not exhibit theoretically exact har-
monic transforms, unlike SSHT or GLESP). The performances
of the spherical harmonic transforms in HEALPix and GLESP
have been widely studied in the past (see, e.g., Reinecke 2011;
Doroshkevich et al. 2011; Reinecke & Seljebotn 2013), and
that of the MW sampling were presented in McEwen & Wiaux
(2011). We do not compile the entirety of these results here,
but we have reproduced the essential results on our machine;
Table 1 summarises the orders of accuracy of the HEALPix
iterative spherical harmonic transform. Using the same setup
as previously, we calculated the maximum error on the spheri-
cal harmonic coefficients when performing the transform back
and forth, averaged over the values of Nside, since the results
were found to be sensitive only to the ratio L/Nside. Even with
several iterations, which multiplies the number of transforms
and thus computation time, the spherical harmonic transform in
HEALPix remains at least an order of magnitude less accurate
than the MW and GLESP counterparts (which, being both theo-
retically exact, achieve comparable performances, see Reinecke
2011; Reinecke & Seljebotn 2013; Doroshkevich et al. 2011;
McEwen & Wiaux 2011). Since the wavelet transforms imple-
mented in MRS and Needatool are also computed in har-
monic space, their complexity and accuracy are dominated by
that of the underlying spherical harmonic transforms. As a con-
sequence, when adopting the HEALPix scheme, S2LET, MRS
and Needatool achieve similar performances, resulting from
the computation time and accumulated errors of (J − J0 + 1)
HEALPix spherical harmonic transforms. In the multiresolution
case, the results depend on the resolution chosen to reconstruct
each wavelet scale.

3.4. Future extensions

In future work we plan to extend S2LET to support directional,
steerable wavelets on the sphere (Wiaux et al. 2008). We also
plan to exploit recent ideas leading to fast (spin) spherical har-
monic transforms (McEwen & Wiaux 2011) to yield faster algo-
rithms than those developed by Wiaux et al. (2008) and McEwen
et al. (2013) to compute directional wavelet transforms on the
sphere. Finally, we intend to add support to analyse spin sig-
nals on the sphere (c.f. Geller et al. 2008; Geller & Marinucci
2010; Starck et al. 2009). In a future release, the code will also
be parallelised, which will lead to further speed improvements.
The S2LET code will thus be under active development with fu-
ture releases forthcoming. In any case, we hope this first version
of the S2LET code will prove useful for axisymmetric scale-
discretised wavelet analysis on the sphere. Indeed, the code has
already been used as an integral part of the new exact flaglet
wavelet transform on the ball (Leistedt & McEwen 2012), the
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spherical space constructed by augmenting the sphere with the
radial line.

4. Examples

The S2LET code is extensively documented and ships with sev-
eral examples in the four languages supported. In this section we
present a subset of short examples, along with the code to exe-
cute them in order to demonstrate the ease of using S2LET to
perform wavelet transforms13. All examples were run with the
scale-discretised wavelet generating functions.

4.1. Wavelet transform from the command line

S2LET includes ready-to-use high-level programs to directly de-
compose a real signal into wavelet coefficients. The inputs are a
FITS file containing the signal of interest and the parameters
for the transform. The program writes the output coefficients in
FITS files in the same directory as the input file and with a con-
sistent naming scheme. These commands are available for both
HEALPix and MW sampling schemes. For the MW sampling
case illustrated in Example 1, the wavelet transform is theoreti-
cally exact and the band limit corresponds to the resolution of the
input map, which will be read automatically from the file. The
transform may be performed in full-resolution or multiresolution
by adjusting the multiresolution flag specified by the last param-
eter (respectively 0 and 1), and the output wavelet coefficients
are computed at full and minimal resolution accordingly. For the
case of a HEALPix map, as illustrated in Example 2, the band-
limit must be supplied as the last parameter in the command. The
output scaling and wavelet coefficients of a HEALPix map are
reconstructed and stored in FITS files at the same resolution as
the input map. For both MW and HEALPix samplings the out-
put coefficients may be read and plotted using the Matlab or
IDL routines.

>> ./bin/s2let_axisym_mw_analysis_real
<inputFitsFile> <lambda> <J_0>
<multiresFlag>

>> ./bin/s2let_axisym_mw_synthesis_real
<outputRoot> <lambda> <J_0> <bandLimit>

Example 1: Performing the forward (analysis) and inverse
(synthesis) wavelet transform of a real signal (MW sampling) from
the command line.

>> ./bin/s2let_axisym_hpx_analysis_real
<inputFitsFile> <lambda> <J_0>
<bandLimit>

>> ./bin/s2let_axisym_hpx_synthesis_real
<outputRoot> <lambda> <J_0> <bandLimit>

Example 2: Performing the forward (analysis) and inverse
(synthesis) wavelet transform of a real signal (HEALPix sampling)
from the command line.

13 Note that the code uses a slightly different notation compared to
the equations of this article: B refers to the wavelet scaling parameter
(denoted λ herein) and Jmin to the first scale of the transform (denoted
J0 herein).

% Example: Wavelet transform in Matlab
lambda = 3; J0 = 2; L = 192;
Jmax = s2let_jmax(L, lambda);

% Read a real HEALPix map from a FITS file
inputfile = ’data/somecmbsimu_hpx_128.fits’;
[f, nside] =

s2let_hpx_read_real_map(inputfile);

% Perform the wavelet transform
[f_wav, f_scal] = s2let_axisym_hpx_analysis

(f,’B’,lambda,’L’,L,’J_min’,J0);

% Plot the map and the wavelet coefficients
figure; ns = ceil(sqrt(2+Jmax-J0+1));
subplot(ns, ns, 1);
s2let_hpx_plot_mollweide(f);
title(’Initial band-limited data’)
subplot(ns, ns, 2);
s2let_hpx_plot_mollweide(f_scal);
title(’Scaling fct’)
for j = J0:Jmax

subplot(ns, ns, j-J0+3);
s2let_hpx_plot_mollweide(f_wav{j-J0+1});
title([’Wavelet scale :

’,int2str(j)-J0+1])
end

Example 3: Performing the wavelet transform of a real signal
(HEALPix sampling) using the Matlab interface.

4.2. Wavelet transform in Matlab and IDL

Examples 3 and 4 read real signals on the sphere from FITS
files, calculate the wavelet coefficients and plot them using a
Mollweide projection. The first case is a Matlab example
where the input map is a simulation of the cosmic microwave
background in the HEALPix sampling. The second case is a
IDL example where the input map is a topography map of the
Earth in MW sampling. S2LET ships with versions of these two
examples in C, Matlab and IDL.

4.3. Wavelet denoising in C

Example 5 illustrates the use of the wavelet transform to de-
noise a signal on the sphere. The input noisy map is a band-
limited topography map of the Earth in MW sampling at reso-
lution L = 128. It is read from a FITS file, decomposed into
wavelet coefficients (for given parameters λ and J0) which are
then denoised by thresholding. The denoised signal is recon-
structed from the denoised wavelet coefficients and written to
a FITS file.

In this example we consider a noisy signal y = s+n ∈ L2(S 2),
where the signal of interest s ∈ L2(S 2) is contaminated with
noise n ∈ L2(S 2). We consider zero-mean white Gaussian noise
on the sphere, where the variance of the harmonic coefficients of
the noise is specified by

E
(
|n`m|2

)
= σ2, ∀`,m. (19)

A simple way to evaluate the fidelity of the observed signal y is
through the signal-to-noise ratio (SNR), define on the sphere by

SNR(y) ≡ 10 log10
‖s‖22
‖y − s‖22

, (20)
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; Example: Wavelet transform in IDL
lambda = 3
J0 = 2

; Read a real MW map from a FITS file
file = ’data/earth_tomo_mw_128.fits’
f = s2let_mw_read_real_map(file)
L = s2let_get_mw_bandlimit(f)
Jmax = s2let_j_max(L, lambda)

; Perform the wavelet transform
f_wav = s2let_axisym_mw_wav_analysis_real

(f, lambda, J0)
f_rec = s2let_axisym_mw_wav_synthesis_real

(f_wav)

; Plot the map and the wavelet coefficients
ns = ceil(sqrt(3+Jmax-J0))
!P.MULTI=[0,ns,ns]
s2let_mw_plot_mollweide, f_rec,

title=’Band-limited map’
s2let_mw_plot_mollweide, f_wav.scal,

title=’Scaling map’
for j=0, Jmax-J0 do begin

s2let_mw_plot_mollweide, f_wav.(j),
title=’Wavelet map ’+strtrim(j+1,2)+’
on ’+strtrim(Jmax-J0+1,2)

endfor
!P.MULTI=0

Example 4: Performing the wavelet transform of a real signal (MW
sampling) using the IDL interface.

where the signal energy is defined by

‖y‖22 ≡ 〈y|y〉 =

∫
S 2

dΩ(ω)|y(ω)|2 =
∑
`m

|y`m|2. (21)

We seek a denoised version of y, denoted by d ∈ L2(S 2), with
large SNR(d) so that d isolates the informative signal s. When
taking the wavelet transform of the noisy signal y, one expects
the energy of the informative part to be concentrated in a small
number of wavelet coefficients, whereas the noise energy should
be spread over various wavelet scales. In this particular toy ex-
ample, the signal has significant power on large scales, as shown
in Figure 3, which are well described in the wavelet basis and
less affected by the random white noise. Since the transform is
linear, the wavelet coefficients of the j-th scale are simply given
by the sum of the individual contributions:

Y j(ω) = S j(ω) + N j(ω), (22)

where capital letters denote the wavelet coefficients, i.e.
Y j ≡ y ? Ψ j, S j ≡ s ? Ψ j and N j ≡ n ? Ψ j. For the zero-mean
white Gaussian noise defined by Eqn. 19, the noise in wavelet
space is also zero-mean and Gaussian, with variance

E
(
|N j(ω)|2

)
= σ2

∑
`

|Ψ
j
`0|

2 ≡
(
σ j

)2
.

Denoising is performed by hard-thresholding the wavelet coef-
ficients Y j, where the threshold is taken as T j = 3σ j. The de-
noised wavelet coefficients D j ≡ d ? Ψ j are thus given by

D j(ω) =

{
0, if Y j(ω) < T j(ω)
Y j(ω), otherwise . (23)

(a) Band-limited signal

(b) Noisy signal with SNR(y) = 11.8dB

(c) Denoised signal with SNR(d) = 14.66dB

Fig. 5: Wavelet denoising by hard-thresholding, using parame-
ters λ = 2 and J0 = 0 and scale-discretised generating func-
tions.When using needlets and B-spline wavelets, the denoised
signals have SNR(d) = 14.68dB and 14.46dB respectively. This
example is included in S2LET as a documented demo program.

The denoised signal d ∈ L2(S 2) is reconstructed from its wavelet
coefficients D j and the scaling coefficients of y, which are not
thresholded. The denoising procedure outlined above is partic-
ularly simple and more sophisticated denoising strategies can
be developed; we adopt this simple denoising strategy merely
to illustrate the use of the S2LET code. In this example we
perform the wavelet transform with parameters λ = 2 and
J0 = 0. For a noisy signal y with SNR(y) = 11.78dB, the
scale-discretised wavelet denoising recovers a denoised signal
d with SNR(d) = 14.66dB. The initial, noisy and denoised maps
are shown in Figure 5. When switching to needlets and B-spline
wavelets while keeping λ and J0 unchanged, the denoised sig-
nals have SNR(d) = 14.68dB and 14.46dB respectively.

5. Summary

In the era of precision astrophysics and cosmology, large and
complex data-sets on the sphere must be analysed at high preci-
sion in order to confront accurate theoretical predictions. Scale-
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// Example: Wavelet denoising in C
int lambda = 2, J0 = 0;

// Read a real MW map from a FITS file
char inputfile[100] = "..."
double *f;
int L = s2let_fits_read_mw_bandlimit(file);
s2let_mw_allocate_real(&f, L);
s2let_fits_read_mw_map(f, file, L);

// Perform multiresolution wavelet analysis
double *f_wav, *f_scal;
s2let_axisym_mw_allocate_f_wav_multires_real

(&f_wav, &f_scal, lambda, L, J0);
s2let_axisym_mw_wav_analysis_multires_real

(f_wav, f_scal, g, lambda, L, J0);

// Threshold the wavelets with a noise model
s2let_axisym_wav_hardthreshold_multires_real

(f_wav, threshold, lambda, L, J0);

// Reconstruct the denoised signal
double *f_denoised;
s2let_mw_allocate_real(&f_denoised, L);
s2let_axisym_mw_wav_synthesis_multires_real

(f_denoised, f_wav, f_scal, lambda,L,J0);

// Write the denoised signal
char outputfile[100] = "..."
s2let_fits_write_mw_map(outfile,f_denoised,L);

Example 5: Denoising a real signal (MW sampling) in C through
hard-thresholding of the wavelet coefficients.

discretised wavelets are a powerful analysis technique where
spatially localised, scale-dependent signal features of interest
can be extracted and analysed. Combined with a sampling the-
orem, this framework leads to an exact multiresolution wavelet
analysis, where signals on the sphere can be reconstructed from
their scaling and wavelet coefficients exactly.

We have described S2LET, a fast and robust implementa-
tion of the scale-discretised wavelet transform. Although the first
public release of S2LET is restricted to axisymmetric wavelets,
the generalisation to directional, steerable wavelets will be made
available in a future release. The core numerical routines of
S2LET are written in C and have interfaces in Matlab, IDL and
Java. Both MW and HEALPix pixelisation schemes are sup-
ported. In this article we have presented a number of examples
to illustrate the ease of use of S2LET for performing wavelet
transform of real signals stored as FITS files and to plot scaling
and wavelet coefficients on Mollweide projections of the sphere.
We have also detailed a denoising example where denoising is
performed through simple hard-thresholding in wavelet space.
Although only a simple denoising strategy was performed to il-
lustrate the use of the S2LET code, it nevertheless performed
very well, highlighting the effectiveness of the scale-discretised
wavelet transform on the sphere.

References
Antoine, J.-P. & Vandergheynst, P. 1998, J. Math. Phys., 39, 3987
Antoine, J.-P. & Vandergheynst, P. 1999, Applied Comput. Harm. Anal., 7, 1
Baldi, P., Kerkyacharian, G., Marinucci, D., & Picard, D. 2009, Annals of

Statistics, 37 No.3, 1150
Barreiro, R. B., Hobson, M. P., Lasenby, A. N., et al. 2000, Mon. Not. Roy.

Astron. Soc., 318, 475
Basak, S. & Delabrouille, J. 2012, Mon. Not. Roy. Astron. Soc., 419, 1163

Cayón, L., Sanz, J. L., Martı́nez-González, E., et al. 2001, Mon. Not. Roy.
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Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Healy, D., Jr., Rockmore, D., Kostelec, P. J., & Moore, S. S. B. 1996, The Journal

of Fourier Analysis and Applications, 9, 341
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Vielva, P., Wiaux, Y., Martı́nez-González, E., & Vandergheynst, P. 2006b, New

A Rev., 50, 880
Vielva, P., Wiaux, Y., Martı́nez-González, E., & Vandergheynst, P. 2007,
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