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ABSTRACT

The Vera C. Rubin Observatory will increase the number of observed supernovae (SNe) by an order

of magnitude; however, it is impossible to spectroscopically confirm the class for all the SNe discovered.

Thus, photometric classification is crucial but its accuracy depends on the not-yet-finalized observing

strategy of Rubin Observatory’s Legacy Survey of Space and Time (LSST). We quantitatively analyze

the impact of the LSST observing strategy on SNe classification using simulated multi-band light curves

from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). First, we

augment the simulated training set to be representative of the photometric redshift distribution per

supernovae class, the cadence of observations, and the flux uncertainty distribution of the test set.

Then we build a classifier using the photometric transient classification library snmachine, based on

wavelet features obtained from Gaussian process fits, yielding similar performance to the winning

PLAsTiCC entry. We study the classification performance for SNe with different properties within a

single simulated observing strategy. We find that season length is important, with light curves of 150

days yielding the highest performance. Cadence also has an important impact on SNe classification;

events with median inter-night gap < 3.5 days yield higher classification performance. Interestingly,

we find that large gaps (> 10 days) in light curve observations do not impact performance if sufficient

observations are available on either side, due to the effectiveness of the Gaussian process interpolation.

This analysis is the first exploration of the impact of observing strategy on photometric supernova

classification with LSST.

Keywords: Cosmology (343); Supernovae (1668); Astronomy software (1855); Open source soft-

ware (1866); Astronomy data analysis (1858); Classification (1907); Light curve classifi-

cation (1954)

1. INTRODUCTION

The upcoming Rubin Observatory Legacy Survey of

Space and Time (LSST) (LSST Science Collaboration

et al. 2009, 2017; Ivezić et al. 2019) is expected to dis-

cover, during its ten-year duration, at least one order

of magnitude more supernovae (SNe) than the current

available SNe samples (Guillochon et al. 2017). Tra-

ditionally, SNe that are used in astrophysical and cos-
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mological studies need to be spectroscopically classified

(e.g. Riess et al. 1998; Astier et al. 2006; Kessler et al.

2009). However, this will be impossible for most events

detected by LSST due to the limited spectroscopic re-

sources; thus, LSST will rely on photometric classifi-

cation, using the events that will be spectroscopically

classified as its training set.

Previous efforts to understand the strengths and limi-

tations of photometric classification algorithms resulted

in the Supernova Photometric Classification Challenge

(SNPhotCC; Kessler et al. 2010a) in preparation for the

Dark Energy Survey (DES; The Dark Energy Survey

Collaboration & Flaugher 2005). Recently, the Pho-
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tometric LSST Astronomical Time-Series Classification

Challenge1 (PLAsTiCC; The PLAsTiCC team et al.

2018; Kessler et al. 2019) was launched in preparation for

LSST, which will reach fainter magnitudes and have a

∼ 4 times larger survey area compared to DES. The clas-

sifiers applied to the datasets from these challenges em-

ployed parametric fits, template fits, and machine learn-

ing models such as neural networks, boosted decision

trees, support vector machine, and gradient boosting

(e.g. Kessler et al. 2010b; Lochner et al. 2016; Charnock

& Moss 2017; Pasquet et al. 2019; Muthukrishna et al.

2019; Villar et al. 2020).

To obtain accurate classification, the training set

must be representative of the test set (e.g. Lochner

et al. 2016). However, photometric classifiers are typ-

ically trained with non-representative spectroscopically-

confirmed events that are biased towards lower redshifts.

Thus, recent work has focused on overcoming the lack

of representativeness (Muthukrishna et al. 2019; Pasquet

et al. 2019; Revsbech et al. 2017; Boone 2019; Carrick

et al. 2021). Photometric classification performance also

depends on the survey observing strategy; however, this

dependence has not yet been explored.

The LSST observing strategy encompasses diverse

considerations such as season length, survey footprint,

single visit exposure time, inter-night gaps, and cadence

of repeat visits in different passbands. The observing

strategy is currently being optimized (LSST Science Col-

laboration et al. 2017; Ivezić et al. 2018; Lochner et al.

2018; Gonzalez et al. 2018; Laine et al. 2018; Jones et al.

2020), a challenging task since the survey has diverse

goals (LSST Science Collaboration et al. 2009; Ivezić

et al. 2019). Recently, the Rubin Observatory LSST

Dark Energy Science Collaboration (DESC) Observing

Strategy Working Group investigated the impact of ob-

serving strategy on cosmology and made recommenda-

tions for its optimization (Scolnic et al. 2018; Lochner

et al. 2018, 2021). In particular, SNe cosmology requires

a high and regular cadence with long season lengths

(how long a field is observable in a year).

In this work, we upgrade the photometric transient

classification library snmachine2 (Lochner et al. 2016)

for use with LSST data and build a classifier based on

wavelet features obtained from Gaussian process (GP)

fits. We also include the host-galaxy photometric red-

shifts and their uncertainties as features. We make sev-

eral other improvements to deal with the greater realism

of the PLAsTiCC data, including training set augmen-

1 https://www.kaggle.com/c/PLAsTiCC-2018/
2 https://github.com/LSSTDESC/snmachine

tation. Using this improved classifier we study the per-

formance of photometric SNe classification for subsets

of light curves with different cadence properties, using

the single observing strategy simulated for the PLAs-

TiCC challenge. We note that this approach is different

from studying the classification performance for differ-

ent observing strategies with fixed total exposure time,

where a reduced season length could be compensated by

a higher cadence.

In Sections 2 and 3 we summarize the PLAsTiCC

dataset and describe the classification pipeline, respec-

tively. Section 4 focuses on the augmentation method-

ology. Our results and their implications for observing

strategy are described in Section 5. We conclude in Sec-

tion 6.

2. PLAsTiCC DATASET

The PLAsTiCC (The PLAsTiCC team et al. 2018;

PLAsTiCC Team & PLAsTiCC Modelers 2019) dataset

consists of simulations of 18 different classes of tran-

sients and variable stars. It contains three-year-long

light curves of 3.5 millions events observed in the LSST

ugrizy passbands, as well as their host-galaxy photo-

metric redshifts and uncertainties. Although the simu-

lations included realistic observing conditions, the ob-

serving strategy used3 is now outdated (Jones et al.

2020). PLAsTiCC mimicked future LSST observations

in two survey modes: the Wide-Fast-Deep (WFD) sur-

vey, which covers almost half the sky and was used for

99% of the events, and the Deep-Drilling-Fields (DDF)

survey, small patches of the sky with more frequent and

deeper observations that have smaller flux uncertainties.

The simulations were divided into a non-

representative spectroscopically-confirmed training set

biased towards brighter events, and which is 0.2% of the

size of the test set. The training set was much smaller,

to mimic the data that will be available at the start

of LSST science operations from current and near-term

spectroscopic surveys. In particular, the training set

was loosely modeled on the magnitude-limited 4-metre

Multi-Object Spectroscopic Telescope Time Domain

Extragalactic Survey (Swann et al. 2019), resulting in

a sample with a mean redshift ∼ 0.3. The unblinded

dataset is available in PLAsTiCC Team & PLAsTiCC

Modelers (2019), the model libraries are presented in

PLAsTiCC Modelers (2019), and more details about the

models and simulations, including the description of the

training set, host-galaxy photometric redshifts and their

uncertainties, are given in Kessler et al. (2019). In this

3 Simulation minion 1016: https://docushare.lsst.org/docushare/
dsweb/View/Collection-4604

https://www.kaggle.com/c/PLAsTiCC-2018/
https://github.com/LSSTDESC/snmachine
https://docushare.lsst.org/docushare/dsweb/View/Collection-4604
https://docushare.lsst.org/docushare/dsweb/View/Collection-4604
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Table 1. Breakdown of the number of SNe per class used
in this work (see simulation details in Kessler et al. (2019)).
For each class, the number of events in the training and test
set is shown.

SN class Ntraining (%) Ntest (%)

SN Ia 2 313 (58%) 1 659 831 (59%)

SN Ibc 484 (12%) 175 094 (6%)

SN II 1 193 (30%) 1 000 150 (35%)

Total 3 990 (100%) 2 835 075 (100%)

work we provide observing strategy recommendations to

improve photometric classification of SNe in particular,

so we restrict ourselves to the PLAsTiCC classes SN Ia,

SN Ibc, and SN II; Table 1 shows a breakdown of the

numbers of SNe in each class.

3. CLASSIFICATION PIPELINE

In this section we describe how we upgraded the pho-

tometric classification pipeline snmachine for use with

PLAsTiCC data. Augmentation was a crucial step in

this process, and it is discussed in greater detail in Sec-

tion 4.

3.1. Light Curve Preprocessing

PLAsTiCC light curves have long gaps (> 50 days) in

the observations because any given sky location is not

visible from the Vera C. Rubin Observatory site for sev-

eral months of the year. Additionally, the SNe are only

detected for a few months so including the entire three-

year-long light curve provides irrelevant information to

the classifier, which in turn degrades its performance. In

order to isolate the observing season that contains the

SNe, we selected the season which contains the observa-

tions flagged as detected, and which has no inter-night
gaps larger than 50 days. To introduce uniformity in

the dataset, we translated the resulting light curves so

their first observation is at time zero. However, this

results in light curves that peak at different times, so

we explored additionally shifting all training set light

curves randomly in time to capture a larger variability

of peak times. We found that augmenting with this ran-

dom shift led to a less representative training set, and

thus to a worse classification performance. Therefore,

in this work, we simply aligned the first observation of

the training events at time zero, such as we did for the

test set. Figure 1 shows an example of light curve pre-

processing.

3.2. Gaussian Process Modeling of Light Curves

We modeled each light curve with a GP regres-

sion (e.g. MacKay 2003; Rasmussen & Williams 2005),
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Figure 1. Example of a simulated LSST type Ibc super-
nova light curve from PLAsTiCC, showing how we prepro-
cess light curves to remove season gaps. The original and
processed light curves are shown in the top and bottom pan-
els, respectively. The processed light curve corresponds to
the shaded region on the original light curve with the first
observation translated to time zero. The observations in dif-
ferent passbands are shown in different colors.

following previous works that successfully used GP-

modeled light curves in their classification pipelines (e.g.

Lochner et al. 2016; Revsbech et al. 2017). Unlike

the previous examples that fitted separate GPs to each

passband, Boone (2019) fitted GPs both in time and

wavelength, thus allowing the GPs to incorporate cross-

band information. Figure 2 shows that such a two-

dimensional GP fit infers the SNe light curve even in

passbands where there are none or only a few observa-

tions, in contrast to the one-dimensional GP fit. Thus,

we used two-dimensional GPs to fit light curves both in

time and wavelength.

We chose a null mean function for the GP, model-

ing the events as perturbations to a flat background.

Following Boone (2019), we used the once-differentiable

Matérn 3/2 kernel for the GP covariance, which is ap-

propriate for modeling explosive transients with sudden

changes in their flux. The time dimension length-scale

and amplitude were optimized per event, using maxi-

mum likelihood estimation. We fixed the length-scale

of the wavelength dimension to 6000 Å as in Boone
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Figure 2. SN Ibc light curve, where the points show the observations, along with their errorbars, and the lines and the shaded
regions show the mean and standard deviation of the GP fit, respectively. The left panel shows the one-dimensional GP fit to
each available passband and the right panel shows the two-dimensional GP fit to all the passbands (shown in different colors).
The two-dimensional GP infers the light curve in passbands where there are no (or few) observations, unlike the one-dimensional
GP.

(2019), since they found that this value produces reason-

able models for all classes in PLAsTiCC. The GPs were

implemented with the package George4 (Ambikasaran

et al. 2014).

3.3. Feature Extraction

In this work we followed the wavelet decomposition

approach of Lochner et al. (2016) to extract features.

Since this is a model-independent approach to feature

extraction, it does not assume any physical knowledge

about the observed phenomena; hence it is applicable to

any time-series data. Moreover, recent results showed

wavelet decomposition was successful for general tran-

sient classification (Varughese et al. 2015; Lochner et al.

2016; Sooknunan et al. 2021; Narayan et al. 2018). This

model-independent approach had not been used previ-

ously by the winning PLAsTiCC entries.

Following Lochner et al. (2016), we used a Stationary

Wavelet Transform and the symlet family of wavelets;

the wavelet decomposition was implemented with the

package PyWavelets (Lee et al. 2019a). To obtain the

wavelet decomposition, we first used the GPs to interpo-

late all light curves onto the same time grid of 277 days

(maximum light curve length of the events); we chose

approximately one grid point per day and used a two-

level wavelet decomposition, following Lochner et al.

(2016). These choices resulted in 6624 (highly redun-

dant) wavelet coefficients per event. While it is common

to combine GP fits and wavelet analysis (e.g. Chen et al.

2013; Istas 1992; Pope 2019, and references therein), we

note that our method of modeling the sparse light curves

with GP fits and then using wavelet decomposition to

4 george.readthedocs.io/

obtain classification features is unusual. This approach

was briefly mentioned in Varughese et al. (2015), and

firstly implemented in Lochner et al. (2016).

Following Lochner et al. (2016), we reduced the di-

mensionality of this wavelet space using Principal Com-

ponent Analysis (PCA) (Pearson 1901; Hotelling 1933)

on the wavelet coefficients of the augmented training set.

After comparing the classifier performance on a valida-

tion set (we set aside 5% of the test set for validation)

with different numbers of PCA components, we found

that 20−50 components were the best to distinguish dif-

ferent types of SNe (their log-loss differs by around 2%);

we chose 40 components (99.995% of the total variance)

due to its slightly better performance.

Finally, we also include the photometric redshift and

its uncertainty as classification features. Unlike our pre-

vious results on the SNPhotCC challenge (Lochner et al.

2016) we find that these features are crucial for solving

the more realistic classification challenge presented by

the PLAsTiCC data. This is also confirmed by other

PLAsTiCC analyses (Boone 2019; Hložek et al. 2020).

3.4. Classification

We augmented the training set as described in Sec-

tion 4, prior to training a classifier. We used the Gra-

dient Boosting Model implementation of the package

LightGBM5 (Ke et al. 2017), in particular the Gradi-

ent Boosting Decision Tree (GBDT) (Friedman 2001).

These are ensemble classifiers that produce predictions

using ensembles of decision trees. The boosting im-

proves the ensemble prediction by sequentially adding

new decision trees that prioritize difficult-to-classify

5 lightgbm.readthedocs.io

george.readthedocs.io/
lightgbm.readthedocs.io
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Table 2. Optimized hyperparameter values used for the
LightGBM model. A description of the hyperparameters is
given in the library documentation.

Hyperparameter WFD setting DDF setting

boosting type gbdt gbdt

learning rate 0.24 0.24

max depth 16 19

min child samples 25 70

min split gain 0.3 0.3

n estimators 115 45

num leaves 50 50

events. Boosted decision trees are commonly used in

machine learning pipelines, including most of the top

solutions to PLAsTiCC challenge (Hložek et al. 2020),

due to their robust predictions, capacity for handling

missing data, and flexibility (Friedman 2001; Ke et al.

2017).

We optimized the GBDT hyperparameters (parame-

ters of the model that must be set before the learn-

ing process starts) by maximizing the performance of

a 5-fold cross-validated grid-search on the augmented

training set. First, each hyperparameter was optimized

individually using a one-dimensional grid, keeping the

other hyperparameters at default values. Then, we con-

structed a six-dimensional grid with three possible val-

ues for each hyperparameter informed by the earlier one-

dimensional optimization. Finally we optimized this six-

dimensional grid through a standard grid search. The

resulting hyperparameter values are shown in Table 2.

Since training and testing on the same events leads to

overfitting, we placed in the same cross-validation fold

all synthetic events that were derived from the same

original event. While alternative hyperparameter opti-

mization techniques can be considered (e.g. Bayesian

optimization; Mockus et al. 1978; Snoek et al. 2012), a

simple grid search strategy as described above proved to

be effective.

3.4.1. Performance Evaluation

In order to evaluate the classification performance,

we used the PLAsTiCC weighted log-loss metric (The

PLAsTiCC team et al. 2018; Malz et al. 2019) given by

Log-loss = −

∑M
i=1 wi ·

∑Ni

j=1

y∗ij
Ni
· ln pij∑M

i=1 wi

 , (1)

where M is the total number of classes, Ni is the number

of events in class i, y∗ij is 1 if observation j belongs to

type i and 0 otherwise, pij is the predicted probability

that event j belongs to class i and wi is the weight of

the class i. The weights can be changed to give different

Table 3. Confusion matrix for binary classification.

True class

Positive (P) Negative (N)

Predicted P True positive (TP) False positive (FP)

class N False negative (FN) True negative (TN)

importances to different classes; however, following the

PLAsTiCC challenge, we gave the same weight to every

SNe class.

We used confusion matrices to visualize the mislabeled

classes; Table 3 shows the confusion matrix for a binary

classification. For ease of comparison, we normalized

the confusion matrices by dividing each entry by the

true number of each SNe class; hence the identity matrix

represents a perfect classification.

For a single SNe class, it is also common to use the

recall (also called completeness/sensitivity) to measure

the fraction of correctly-classified SNe, and the precision

to measure the fraction of SNe assigned to the considered

class that are indeed from that class. These are defined

as

recall =
TP

TP + FN
(2)

and

precision =
TP

TP + FP
. (3)

4. AUGMENTATION

As previously outlined, the PLAsTiCC training set

is non-representative of the test set in redshift (see Fig-

ure 3) and also imbalanced: the most common SNe class

has ∼ 4.8 times more events than the least common.

However, to obtain accurate classification the training

set must be representative (Lochner et al. 2016) and

balanced (as later discussed in Section 4.1).

Recent augmentation approaches rely on generating

synthetic light curves from the GPs fitted to training set

events (Revsbech et al. 2017; Boone 2019). In particular,

Boone (2019) simulated new sets of observations for each

object such that they match the cadence, depth and un-

certainty of observations of the test set, which ensured

the representativity of these properties irrespective of

the quality of the original event. The augmented obser-

vations were drawn from the mean prediction of the GP,

and blocks of observations were dropped to simulate sea-

son boundaries. Additionally, Boone (2019) introduced

redshift augmentation, where the observations of a new

synthetic event are simulated at a different redshift from

the original.

We adapted the approach used in Boone (2019) for our

training set augmentation. Figure 4 shows a synthetic

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier
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Figure 3. Host galaxy photometric redshift distribution per supernova class, where SN Ia, SN Ibc, SN II are shown, respectively,
on the left, middle and right panels. The distribution of the training, augmented training and test sets are shown as fine solid,
bold solid and dashed lines, respectively. Although the training set distribution is not representative of the test set, the
augmented training set (Section 4) is close to the desired test distribution.
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Figure 4. The left panel shows a SN Ibc light curve where the points show the observations, along with their errorbars, and
the lines and the shaded regions show the mean and standard deviation of the GP fit, respectively. The right panel shows a
synthetic event at a different redshift generated from the original event using the procedure described in Section 4. Note that,
in this example, the original event was simulated in the higher-cadence DDF survey and we generated the synthetic event in
the WFD survey.

light curve generated using our augmentation procedure,

which can be summarized as follows:

1. Choose the number of synthetic events to create

(Section 4.1).

2. Model the original light curve with a two-

dimensional GP fit in time and wavelength (as de-

scribed in Section 3.2).

3. Choose a redshift for the synthetic event (Section

4.2).

4. Create synthetic observations at the new redshift,

making use of the GP fit to the original event (Sec-

tion 4.3).

5. Generate a photometric redshift (Section 4.4).

The WFD and DDF surveys have very different

characteristics and enable qualitatively different science

goals. Hence we found it is important to use customized

augmentation for the two survey-modes, in contrast to

the approach of the winning PLAsTiCC entries. Since

the DDF survey has a different redshift distribution,

higher cadence, and higher signal-to-noise ratio than the

WFD survey, we must use a different augmentation and,

consequently, a different classifier.

We now describe the augmentation procedure in de-

tail. The reader should keep in mind, where relevant,

that the augmentation procedure was customized for the

two survey modes as necessary.

4.1. Number and Class Balance of Synthetic Events

As we wish to optimize classification performance for

all SNe classes, we generated an augmented training set

with the same number of events per class (i.e., a bal-

anced training set). We also investigated an augmenta-

tion of the training set to resemble the class proportions

of the test set (∼ 59% SN Ia, ∼ 6% SN Ibc, ∼ 35% SN

II). However this gave worse performance, biasing the

predictions toward the most common class.

We determined that the performance of the classifier

stabilized when the size of the WFD augmented training
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set was around 4× 104. In this final configuration, each

training set SN was augmented up to 140 times. The

DDF augmented training set stabilized around 8× 103,

and each DDF training set SN was augmented up to 70

times.

4.2. Redshift Augmentation

As previously outlined, redshift augmentation was

found to be critical for the PLAsTiCC dataset (Boone

2019). Figure 3 shows the bias of the training set to-

wards low-redshift events in comparison to the test set.

We augmented each training set event of the WFD sur-

vey between

zmin ≈ max {0, 0.90 zori − 0.10} and

zmax ≈ 1.43 zori + 0.43 ,
(4)

where zori is the spectroscopic redshift of the original

event. For the augmentation, we used a target distribu-

tion that is class-agnostic. First, we drew an auxiliary

value z∗ from a log-triangular distribution with mini-

mum value and mode log(zmin), and maximum value

log(zmax). Then, we calculated the redshift of the new

augmented event zaug,

zaug (z∗) = −z∗ + zmin + zmax . (5)

For the deeper DDF survey, the corresponding zmax was

increased by 40%, otherwise the same procedure was

followed. These limits arise due to the fact that for a

given event in the original training set, its GP fit is more

reliable close to the observations; hence we limit the

GP extrapolation in wavelength when generating syn-

thetic events, which translates into the above redshift

constraint. This distribution differs slightly from Boone
(2019), which also uses a class-agnostic augmentation.

We derive the aforementioned redshift limits for aug-

mentation in Appendix A.

The process of actually redshifting the light curve after

choosing the new redshift is discussed below.

4.3. Generating Realistic Synthetic Observations

The first step in generating the synthetic light curves

is selecting the epochs at which mock observations will

be made. Our implementation proceeded as in Boone

(2019); we summarize the approach as follows. First, we

stretched the observed epochs of the original event to ac-

count for the time dilation due to the difference between

the original and augmented redshifts. We also removed

any observations that fell outside the observing window

as a consequence. Then we randomly picked a target

number of observations from a Gaussian mixture model

based on the test set6. However, this fails to account for

the change in the cadence due to redshift augmentation;

events shifted to higher redshifts have a lower density

of observations than the events observed at those red-

shifts. In order to account for this, we multiplied this

target number by (1+zaug)/(1+zori). We then generated

additional observations at the same epochs as existing

observations in randomly-selected passbands, associat-

ing each synthetic observation with an observed epoch

in the original light curve. Further, to avoid creating

synthetic light curves where most of the observations are

obtained through this procedure, we capped the num-

ber of additional observations generated to be less than

50% of the total number of observations in the original

light curve. If this procedure resulted in more obser-

vations than the original target number drawn from the

Gaussian mixture model, we then randomly dropped ob-

servations (original or new) until the target number was

reached. Otherwise, to introduce additional variability,

we randomly dropped 10% of the synthetic observations.

Once we determined the epochs at which new observa-

tions would be generated, we redshifted the light curve

as follows. We first computed the central wavelengths

of the ugrizy passbands of the synthetic event as seen at

the redshift of the original event. Then, we computed

the mean and uncertainty of the GP fit to the origi-

nal event, at the observed epochs of the original event

associated with the synthetic observations but at the

redshifted wavelengths. The steps so far dealt with the

time dilation but not with the cosmological dimming of

the synthetic event. Assuming a standard cosmological

model, we redshifted the flux of the synthetic event and

its uncertainty, such that it is observed at zaug. Further

details of this redshifting implementation are given in

Appendix A.

Following Boone (2019), we then combined the flux

uncertainty of the augmented events predicted by the

GP in quadrature with a value drawn from the flux un-

certainty distribution of the test set, in order to achieve a

more representative flux uncertainty distribution for the

augmented training set. We also drew noise to add to

the flux of the augmented events from a Gaussian with

standard deviation of the aforementioned value from the

flux uncertainty distribution.

Finally, we imposed quality cuts on the synthetic

events in order to decide whether to add them to the

6 The model used contained one component with mean 24.5 and
standard deviation 8.5 for WFD, and two components with prob-
abilities for each component of [0.34, 0.66], means of [57.4, 92.8]
and standard deviations of [16.5, 18.4] for DDF. While a mixture
model was fitted for both WFD and DDF, a single component
was found to be the best fit for WFD.
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augmented training set. To make the synthetic events

as similar as possible to the test set events, we use a

2-detection trigger based on PLAsTiCC (Kessler et al.

2019). Boone (2019) fitted an error function to the ob-

servations from the full dataset to predict the proba-

bility of detection as a function of signal-to-noise ratio

(S/N), and applied this probabilistic threshold to all ob-

servations. Boone (2019) then accepted an event if at

least two of its observations were predicted as detected.

However, we find that this was insufficient to constrain-

ing a GP, thus we required an additional observation,

without requiring it to be predicted as detected by the

chosen probabilistic detection threshold. Note that all

synthetic light curves in the augmented DDF training

set meet this quality cut as they are generated with a

higher number of observations.

4.4. Photometric Redshift

In order to simulate realistic photometric redshifts for

the synthetic events, following Boone (2019) we chose

a random event from the ∼ 4% of test set events that

had a spectroscopic redshift measurement, and calcu-

lated the difference between its spectroscopic and pho-

tometric redshifts. We then added this difference to the

true redshift of the augmented event to generate a pho-

tometric redshift.

4.5. Computational Resources

We performed our computations on an Intel(R)

Xeon(R) CPU E5-2697 v2 (2.70GHz). Using a sin-

gle core, the pipeline takes ∼ 1 min to fit GPs to

1000 events, and to perform their wavelet decomposi-

tion. Generating a balanced augmented training set

with 4× 104 events takes ∼ 9 hrs. Reducing the dimen-

sionality using PCA takes ∼ 30 min for an augmented

training set of 4× 104 events and optimizing the Light-

GBM classifier on the same training set takes ∼ 8 hrs.

After we computed the test set features, generating pre-

dictions with the trained classifier takes∼ 10 min. Over-

all, the entire classification pipeline takes ∼ 70 core

hours of computing time for WFD and 12 for DDF in

this setting.

5. RESULTS AND IMPLICATIONS FOR

OBSERVING STRATEGY

We now turn to our results on the PLAsTiCC dataset

and consider in detail their implications for various as-

pects of the LSST observing strategy. We study clas-

sification performance for SNe with different properties

within the single simulated observing strategy that is

available in PLAsTiCC. We present results related to

classification performance for the two different survey
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Figure 5. WFD test set normalized confusion matrix for
the classifier trained on the augmented training set and its
log loss performance. Each event is assigned to the class with
the highest prediction.

modes (WFD and DDF) in Section 5.1. We then explore

the performance as a function of light curve length (Sec-

tion 5.2), median inter-night gap (Section 5.3), number

of gaps > 10 days (Section 5.3), and number of obser-

vations near the peak (Section 5.4).

5.1. Survey Mode-specific Augmentation and its Effect

on Performance

Figure 5 shows the confusion matrix for the classifier

trained on an augmented WFD training set as described

in Section 4. Despite the use of general wavelet features

which were not specifically designed for SNe classfica-

tion, the classifier obtains a log-loss of 0.55. This perfor-

mance is comparable to that obtained by the top three

submissions to PLAsTiCC for these SN classes (Boone

2019; Hložek et al. 2020). We note that similar to other

classifiers, the performance is weakest for SN Ibc (75%

recall but 39% precision).

The DDF survey contains fainter events with higher

cadence, as well as lower flux uncertainty compared to

the WFD survey. Unlike the PLAsTiCC submissions,

we therefore carried out a separate augmentation for

this survey mode and built a custom classifier for it, as

discussed in Section 4.

We now compare the DDF test set classification per-

formance when using a classifier which is based on the

augmented PLAsTiCC training set (which mixes WFD

and DDF events) versus one trained on an augmented

DDF-only training set. Figure 6 shows that the classifier

optimized for the WFD test set obtains a worse perfor-

mance on the DDF test set, with a higher log-loss (0.570

vs 0.384) and a lower recall for SNe II and SNe Ia. These

results illustrate the vital need for matching augmented

training sets to the characteristics of the different survey

modes. It also strongly highlights the better classifica-
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Figure 6. DDF test set normalized confusion matrix for the classifier trained with (left panel) the general WFD+DDF
augmented training set and (right panel) with the DDF-only augmented training set. The results show the importance of using
an augmented training set customized for the specific survey mode characteristics.

0 50 100 150 200
Light curve length (days)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

SN Ia
SN Ibc
SN II

0 50 100 150 200
Light curve length (days)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

SN Ia
SN Ibc
SN II

0 50 100 150 200
Light curve length (days)

0.000

0.005

0.010

0.015

0.020

De
ns

ity
Figure 7. WFD test set recall (left panel) and precision (middle panel) as a function of light curve length per SNe class. The
right panel shows the density of events as a function of light curve length. Because of the low number of events in the tails
of the distribution, we restrict our analysis to between 50 and 175 days (comprising 94% of the events). Recall and precision
increase for longer light curves.

tion performance that can be obtained for SNe in the

DDF survey compared to the WFD survey.

5.2. Light Curve Length

The season length is an important factor for observ-

ing strategy, which can be tuned by taking additional

observations in suboptimal conditions (such as at high

airmass). We compared the classification performance

of light curves of different lengths, as a proxy for season

length. The right panel of Figure 7 shows that 94% of

events in the test set have light curve lengths between

50–175 days; we focus on this interval in the recall (left

panel) and precision (middle panel) plots, as outside the

range the results are dominated by small-number effects.

As expected, events observed for longer are better char-

acterized by the feature extraction step, and hence yield

higher recall and precision. Again, we note that for a

fixed total exposure time, a reduced season length could

be compensated by a higher cadence. Our findings sup-

port the minimum five-month season length recommen-

dation in Lochner et al. (2018, 2021).

5.3. Inter-night Gaps

The cadence of observation, as quantified by the inter-

night gap when no observations are taken in any pass-

band, is a critical factor in LSST observing strategy that

impacts all transient science goals. To investigate this

effect, we compared the performance of SNe with dif-

ferent median inter-night gap. The left panel of Fig-

ure 8 shows that cadence has an important impact on

SNe classification; events whose median inter-night gap

is < 3.5 days yield higher recall and precision. Such

events comprise nearly 70% of the entire test set. These

events are better sampled and thus have a higher light

curve quality. Moreover, for a fixed SN Ia recall of 80%,

the core-collapse SN contamination is 6.8% for events

whose median inter-night gap is < 3.5 days, and 8.0%

otherwise. These results support previous works such

as Lochner et al. (2018, 2021) that call for SN Ia light

curves to have frequent observations in order to reduce

the uncertainty on the cosmological distance modulus.

However, the median inter-night gap does not fully

capture the impact of gaps in the light curve. A 3.5-

day median inter-night gap does not imply a uniform

cadence; it is entirely possible that such light curves
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Figure 8. WFD test set recall (left panel) and precision (middle panel) as a function of median inter-night gap per SNe class
for events with light curves between 50 and 175 days long. In general, the recall and precision are higher for events whose
median inter-night gap is < 3.5 days (left side of the black line). The right panel shows the density of events as a function of
median inter-night gap; ∼ 64% of SN Ia, ∼ 63% of SN Ibc, and ∼ 66% of SN II from the test set events have median inter-night
gap < 3.5 days and light curve lengths between 50 and 175 days.
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Figure 9. WFD test set recall (left panels) and precision (middle panels) as a function of the number of gaps longer than
10 days (top row) and the length of the longest inter-night gap (bottom row), per SNe class. We only included events with
median inter-night gap < 3.5 days and light curves between 50 and 175 days long. These results show that large gaps do not
significantly impact the SNe classification for this subset. The right panel shows the density of events as a function of the
number of large gaps (top row) and the length of the longest inter-night gap (bottom row). We note that the results in the tails
of the distribution are dominated by small-number effects.

contain much larger gaps. To investigate the impact of

such ‘gappy’ light curves, we studied the classification

performance as a function of the number of large gaps

(> 10 days) in a subsample of events with a median

inter-night gap < 3.5 days.

The upper left panels of Figure 9 show the recall and

precision are broadly independent of the number of large

gaps in a light curve7. We tested this with> 20-day gaps

and found similar results.

We expect that the reason for these surprising find-

ings is that the GP fits can still constrain a light curve

fit sufficiently well if there are enough points on either

side of large gaps. This is demonstrated in Figure 2,

which shows an example of a GP fit to an event with

four gaps > 10 days, one of which is > 20 days. We

7 SN Ibc and SN II have a small recall increase for higher number
of large gaps; we find that these events correspond to longer light
curves at lower redshifts, which tend to have a higher recall for
SN Ibc and SN II. Note that uncertainties are also larger for
cases with a greater number of large gaps due to small-number
statistics.
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Figure 10. WFD test set recall (left panel) and precision (middle panel) as a function of the number of observation between
10 days before and 30 days after the peak per SNe class. We only included events with median inter-night gap < 3.5 days and
light curves between 50 and 175 days long. In general, the recall and precision increase with the number of observations near
the peak, until they reach an approximately constant value for events with ≥ 9 observations. The right panel shows the density
of events as a function of number of observations near peak. We note that, as with previous plots, the results in the tails of the
distribution are dominated by small-number effects.

then compare the classification performance as a func-

tion of the length of the longest inter-night gap per light

curve, to investigate at which point the performance de-

grades due to inability of GP fits to constrain a light

curve fit. The bottom panels of Figure 9 show that the

recall and precision of SNe either slowly decrease or re-

main constant with the increase of the length of longest

inter-night gap. While previous works recommended a

regular cadence without inter-night gaps larger than 10 –

15 days (Lochner et al. 2018, 2021), we find that requir-

ing a median inter-night gap of < 3.5 days is sufficient

for photometric classification methods using GPs that

incorporate cross-band information to model the light

curves and generate features.

We also find that 98% of DDF events have a median

inter-night gap of< 3.5 days, and hence the DDF sample

performs uniformly well independent of the inter-night

gap.

5.4. Observations Near Peak

Obtaining observations near the peak of a SN Ia light

curve is generally considered critical to obtain a reliable

cosmological distance modulus. To investigate whether

SNe classification has a similar requirement, we analyzed

the classification performance as a function of the num-

ber of observations near the peak (defined as 10 days

before and 30 days after the peak). We estimated the

peak time as the moment that maximizes the GP fit

predicted flux. Figure 10 shows that the recall and pre-

cision generally increase with the number of observations

near the peak, reaching a constant value for events with

more than nine observations. This improvement in per-

formance is likely due to better characterization of light

curve shape. However, since we cannot predict when

a SN will be observed, this result only further demon-

strates the importance of frequent observations to in-

crease the likelihood of obtaining observations near the

peak. These results agree with Takahashi et al. (2020),

who found that SNe light curves without observations

near the peak were more often misclassified.

6. DISCUSSION AND CONCLUSIONS

We have presented a quantitative analysis of the im-

pact of various factors related to the LSST observing

strategy on the performance of SNe photometric classi-

fication, using the PLAsTiCC simulation. We use the

photometric transient classification library snmachine,

based on model-independent wavelet features (instead

of specialized features constructed using domain knowl-

edge about SNe). In line with previous studies using

the PLAsTiCC data, we confirm that augmentation for

a number of aspects (the photometric redshift distribu-

tion per supernovae class, the distribution of the ob-

serving cadence, and the flux uncertainty distribution)

is crucial for obtaining a representative training set for

machine learning classification.

Our classifier yields similar performance to the top

PLAsTiCC submission (Boone 2019; Hložek et al. 2020)

and competitive results in core-collapse SN contamina-

tion (see below; Kessler & Scolnic 2017; Jones et al.

2017), which is essential for measurements of the dark

energy equation of state parameter. We obtain a core-

collapse SN contamination of 8.3% (for SNe predicted

to be SN Ia with > 50% probability) which is compara-

ble to the ∼ 5% contamination obtained in Jones et al.

(2018) with Pan-STARRS SNe. This could be further

improved by optimizing the classifier for SN Ia classifica-

tion rather than overall classification performance as was

done in PLAsTiCC. Jones et al. (2018) demonstrated

that this level of contamination provides competitive

cosmological constraints when using a Bayesian method-

ology to marginalize over the contamination. Hence, we

expect our contamination levels to also be acceptable for

cosmology when used along with a Bayesian methodol-

ogy such as Bayesian Estimation Applied to Multiple
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Species (Kunz et al. 2007; Lochner et al. 2013; Roberts

et al. 2017; Jones et al. 2018).

Turning to the question of how observing strategy im-

pacts classification, our results demonstrate the impor-

tance of customized training set augmentation for each

LSST survey mode (WFD and DDF). We find that the

season length is important – in general, better classifi-

cation performance is obtained for longer light curves.

This supports the minimum five-month season length

recommendation in Lochner et al. (2018, 2021). Fur-

ther, we show that good classification performance re-

quires a cadence with a median inter-night gap of < 3.5

days. Surprisingly, however, we find that large gaps

of > 10 days do not impact the classification perfor-

mance for events exhibiting such a cadence, due to the

ability of the Gaussian process methods we use to inter-

polate such gaps effectively. Finally, a regular cadence

which achieves > 9 observations near the peak of the

light curve provides effective classification performance.

In Appendix B we show that these results also hold if

we replace our classification predictions with the pre-

dictions obtained by Boone (2019), who use a different

feature set and an independent classification framework

with somewhat different augmentation choices.

These results provide guidance for further refinement

of the LSST observing strategy on the question of SNe

photometric classification. While the PLAsTiCC sim-

ulation used in this analysis has an outdated cadence,

we expect our general conclusions to hold for any rea-

sonable variation currently under consideration. Our

augmentation and classification pipeline will be used in

the future to study the SNe classification performance

of more recent observing strategy simulations in detail.

Since the release of PLAsTiCC, new and more real-

istic observing strategy simulations have been released.

These simulations include improvements to the sched-

uler, more realistic weather, and changes to the cadence

in different bands. While new transient simulations us-

ing the more recent baseline observing strategy may re-

sult in different classification performance, we still ex-

pect our broad conclusions to remain unchanged. Fu-

ture work will include investigating the dependence of

classification performance on different observing strat-

egy simulations.

With this paper we publicly release the photometric

transient classification library snmachine8. The library

also contains some example Jupyter notebooks which

can be used to reproduce this work. In the future, the

8 https://github.com/LSSTDESC/snmachine

snmachine pipeline will be extended to facilitate the

classification of other transient classes.
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APPENDIX

A. REDSHIFTING IMPLEMENTATION FOR AUGMENTATION

In this appendix we provide further details of the augmentation procedure described in Section 4. In particular,

we present the technique for redshifting a light curve, and derive the redshift limits for augmentation shown in

Equation (4).

Consider a multi-band SN light curve at redshift zori, from which we want to create a synthetic multi-band light

curve at redshift zaug. For each epoch, the spectrum of the new synthetic SN is

fλ; aug(λ) =
1 + zori
1 + zaug

[
dL (zori)

dL (zaug)

]2
fλ

(
1 + zori
1 + zaug

λ

)
, (A1)

where λ is the observed wavelength, dL is the luminosity distance, and fλ is the spectrum of the original event. Note

that the spectrum of the synthetic SN depends on the original spectrum evaluated at redshifted wavelengths. The

two-dimensional GP fit described in Section 3.2 then models the convolution of the original spectrum with the ugrizy

passbands to predict the measured flux. Thus, for each epoch of the synthetic SN, we estimated the flux in the original

event at each redshifted passband b (where b = u, g, r, i, z, y) as

Fori b = GP
(

1 + zori
1 + zaug

λb

)
, (A2)

where GP represents the mean of the GP fit used to model the flux observations of the original SNe, and λb is the

central wavelength of passband b. We calculated these central wavelengths using the LSST throughputs9. Similarly,

we estimated the flux uncertainty in each passband as the uncertainty of the GP fit.

Finally, we adjusted the fluxes of the synthetic event and their uncertainties to the desired redshift zaug. We assumed

a flat ΛCDM cosmology with H0 = 70 km/s/Mpc and Ωm = 0.3. We estimated the flux of the synthetic event in each

passband b as

Faug b =
1 + zori
1 + zaug

[
dL (zori)

dL (zaug)

]2
Fori b , (A3)

and estimated its uncertainty similarly.

As previously discussed in Section 4.2, the GP fit is more reliable close to observations. To test the GP extrapolation,

for every SNe in the training set, we fitted a GP with the observations in the ugriz passbands. Then, we compared the

observed flux in the y passband with the flux predictions of the GP fit at the same epochs. Additionally, we repeated

this procedure to test the GP extrapolation in the u passband using the observations in the grizy passbands. Figure 11

shows the GP is reliable despite underestimating some flux errors. Since the GP errors increase at wavelengths far from

9 https://github.com/lsst/throughputs

https://github.com/lsst/throughputs
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Figure 11. Distribution of the GP errors resulting from extrapolating GP fits to u or y passbands. Ftrue is the true flux of an
observation, and Fpredicted and σpredicted are the flux and its uncertainty predicted by a GP fit at the corresponding epoch and
passband. An ideal error estimation results in a unit Gaussian (black line).

the original observation, we restricted our extrapolation to minimum (λg − λu) and maximum (λy − λz) wavelength

ranges. Thus, when generating a synthetic SN at higher redshifts, we have that λu− (1 + zori)/(1 + zaug)λu ≤ λg−λu.

Similarly, for events generated at lower redshifts, we obtain the redshift limits for augmentation presented in Section 4.2:

zmin = max

{
0, (1 + zori)

(
2− λz

λy

)−1

− 1

}
≈ max {0, 0.90 zori − 0.10} ,

zmax = (1 + zori)

(
2− λg

λu

)−1

− 1

≈ 1.43 zori + 0.43 .

. (A4)

B. COMPARISON WITH OTHER PLASTICC CLASSIFIERS

Section 5 presented the results of our classifier on the impact of observing strategy on photometric classification.

In this appendix, we show that our results are generalizable beyond our classification pipeline, by replacing the our

classification predictions with those obtained by Boone (2019). We use the publicly available predictions for SN Ia, SN

Ibc, and SN II in the test set10; we choose the predictions obtained with a classifier optimized on the log-loss metric,

which equally weights all the PLAsTiCC classes (wi = 1 in Equation 1). The choice of this flat-weighted metric reduces

the impact of additional classes upweighted in the original challenge, but unused in the present work. Figures 12 and

13 show that the classifier used in Boone (2019) has the same performance behavior as ours. This further indicates

that our conclusions are general and not an artifact of our classification architecture.

10 http://supernova.lbl.gov/avocado plasticc/predictions/
predictions plasticc test flat weight.csv

http://supernova.lbl.gov/avocado_plasticc/predictions/predictions_plasticc_test_flat_weight.csv
http://supernova.lbl.gov/avocado_plasticc/predictions/predictions_plasticc_test_flat_weight.csv
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Figure 12. WFD test set recall (top two rows) and precision (bottom two rows) as a function of light curve length (left panels),
median inter-night gap (middle panels), and number of gaps larger than 10 days (right panels), per SNe class. In the first and
third rows we reproduce the results of this work previously shown in Figures 7, 8, and 9. In the second and fourth rows we show
the classification predictions obtained by Boone (2019).
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Figure 13. WFD test set recall (top two rows) and precision (bottom two rows) as a function of the length of the longest
inter-night gap (left panels) and the number of observations between 10 days before and 30 days after the peak length (right
panels), per SNe class. In the first and third rows we reproduce the results of this work previously shown in Figures 9 and 10.
In the second and fourth rows we show the classification predictions obtained by Boone (2019).
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Ivezić, Ž., Jones, L., & Ribeiro, T. 2018, Call for White

Papers on LSST Cadence Optimization
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Science Conference, ed. Stéfan van der Walt & Jarrod

Millman, 56 – 61, doi: 10.25080/Majora-92bf1922-00a

Zhang, H., Si, S., & Hsieh, C.-J. 2017, arXiv preprint

arXiv:1706.08359

http://doi.org/10.5281/ZENODO.3510098
http://doi.org/10.1088/1475-7516/2013/01/039
https://arxiv.org/abs/2104.05676
http://doi.org/10.5281/zenodo.842713
http://doi.org/10.3847/1538-3881/ab3a2f
http://doi.org/10.1088/1538-3873/ab1609
http://doi.org/10.3847/1538-4365/aab781
http://doi.org/10.5281/zenodo.3509134
http://doi.org/10.1051/0004-6361/201834473
http://doi.org/10.1080/14786440109462720
http://doi.org/10.5281/ZENODO.2612896
http://doi.org/10.5281/ZENODO.2535746
https://etheses.whiterose.ac.uk/25066/
http://doi.org/10.1093/mnras/stx2570
http://doi.org/10.1086/300499
http://doi.org/10.1088/1475-7516/2017/10/036
http://doi.org/10.1093/mnras/staa3873
http://doi.org/10.18727/0722-6691/5129
http://doi.org/10.1093/pasj/psaa082
http://doi.org/10.1142/s0217751x05025917
http://doi.org/10.1093/mnras/stv1816
http://doi.org/10.3847/1538-4357/abc6fd
http://doi.org/10.1038/s41592-019-0686-2
http://doi.org/10.5281/ZENODO.4019146
http://doi.org/10.25080/Majora-92bf1922-00a

	Introduction
	PLAsTiCC Dataset
	Classification pipeline
	Light Curve Preprocessing 
	Gaussian Process Modeling of Light Curves
	Feature Extraction
	Classification
	Performance Evaluation


	Augmentation 
	Number and Class Balance of Synthetic Events 
	Redshift Augmentation
	Generating Realistic Synthetic Observations
	Photometric Redshift
	Computational Resources

	Results and Implications for Observing Strategy 
	Survey Mode-specific Augmentation and its Effect on Performance
	Light Curve Length
	Inter-night Gaps
	Observations Near Peak

	Discussion and Conclusions
	Redshifting Implementation for Augmentation
	Comparison with other PLASTICC classifiers

