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We introduce the Generalised Lensing and Shear Spectra (GLaSS) code which is available for
download from https://github.com/astro-informatics/GLaSS. It is a fast and flexible public
code, written in Python, that computes generalized spherical cosmic shear spectra. The commonly
used tomographic and spherical Bessel lensing spectra come as built-in run-mode options. GLaSS is
integrated into the Cosmosis modular cosmological pipeline package. We outline several computa-
tional choices that accelerate the computation of cosmic shear power spectra. Using GLaSS, we test
whether the assumption that using the lensing and projection kernels for a spatially-flat universe –
in a universe with a small amount of spatial curvature – negligibly impacts the lensing spectrum.
We refer to this assumption as The Spatially-Flat Universe Approximation, that has been implicitly
assumed in all cosmic shear studies to date. We confirm that The Spatially-Flat Universe Approxi-
mation has a negligible impact on Stage IV cosmic shear experiments provided that a sensible, yet
still conservative, bound on Ωk is adopted.

I. INTRODUCTION

The shape of distant galaxies is distorted by inhomo-
geneities in the gravitational field along the line of sight;
a phenomenon known as gravitational lensing. When
the distortion is small, as is most commonly the case,
the change in shape is a change in the size and elliptic-
ity of the observed image; known as shear. The gravi-
tational lensing caused by large-scale structure, and in
particular the two-point correlation function or power
spectrum of this effect, is called cosmic shear.

Experiments that measure cosmic shear are sensitive
to the physics of the late Universe, making them an ideal
probe to distinguish between models of dark energy [1].
Stage IV weak lensing experiments, that include Euclid1

[2], WFIRST2 [3] and LSST3 [4], will provide an order
of magnitude improvement in the precision and accu-
racy of cosmological parameter estimation over existing
surveys [5].

To prepare for these upcoming experiments we must
prepare fast and accurate codes to compute the theo-
retical cosmic shear power spectra for any cosmology.
While there are already publicly available tomographic
lensing codes that use the Limber approximation [ask
Tom for citations], there are no other codes that can
compute the cosmic shear power spectra with an ar-
bitrary weight function. It remains an open question
which weight-function optimally extracts cosmological
information, and we leave this for future work.

∗ peterllewelyntaylor@gmail.com
1 http://euclid-ec.org
2 https://www.nasa.gov/wfirst
3 https://www.lsst.org

Also, before the arrival of Stage IV data, it is vital to
test the validity of all assumptions used in cosmic shear
studies. One of these approximations is that for the
purposes of computing the cosmic shear power spectra
we can always treat the Universe as spatially flat. This
is an assumption that has not been tested previously.

The structure of this paper is as follows. In Section
II we review the equations for the cosmic shear power
spectra and the effect of spatial-curvature on the lensing
kernel and projection kernel. In Section III we intro-
duce GLaSS, which computes lensing spectra, and dis-
cuss a few computational choices that we implemented
to speed up the computation of cosmic shear power spec-
tra. Finally in Section IV we demonstrate the speed of
GLaSS and discuss the impact of the Spatially-Flat Uni-
verse Approximation.

II. FORMALISM

A. Generalized-Spherical Lensing Spectra

The generalized spherical-transform is defined by
(Taylor et al. 2018):

γ`m (η) =

√
2

π

∑
g

γg (rg,θg)W` (η, rg) 2Y`m (θg) , (1)

where γ ∈ C is the shear, the sum is over all galaxies
g with angular coordinate θg and radially coordinate
rg, W` is a weight and 2Y`m are the spin-2 spherical
harmonics. The cosmic shear power spectrum in this
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basis is:

Cγγ` (η1, η2) =
9Ω2

mH
4
0

16π4c4
(`+ 2)!

(`− 2)!

∫
dk

k2
Gγ` (η1, k)Gγ` (η2, k) ,

(2)
where Ωm is the fractional energy density of matter, c
is the speed of light in vacuum and H0 is the value of
the Hubble constant today. The G-matrix is:

Gγ` (η, k) ≡
∫

dzpdz
′ n (zp) p (z′|zp)

×W` (η, r [z′])U` (r [z′] , k)

(3)

and the U -matrix is:

U` (r[z], k) ≡
∫ r

0

dr′
FK (r, r′)

a (r′)
j` (kr′)P 1/2 (k; r′) , (4)

where a is the scale factor, j`(kr) are the spherical Bessel
functions and P (k; r) is the power spectrum. The radial
distribution of galaxies is denoted by n(z) and p (z|z′)
gives the probability that a galaxy has a redshift z, given
a photometric redshift measurement z′. For a spatially-
flat cosmology the lensing kernel, FK (r, r′), is:

FK (r, r′) ≡ r − r′

rr′
. (5)

The power spectrum caused by the random ellipticity
component of galaxies, the shot noise spectrum, is given
by:

Nee
` (η1, η2) =

σ2
e

2π2

∫
dz n (z)W` (η1, r)W` (η2, r) ,

(6)
where σ2

e is the variance of the intrinsic (unlensed) el-
lipticities of the observed galaxies. We take σe = 0.3
throughout [6].

Taking the weight-function, W` (η, r [z]) ≡ j` (ηr[z])
in equations (3) and (6) yields the equations for ‘3D
cosmic shear’ first proposed in [7]. To recover the ‘to-
mographic’ cosmic shear spectra, first proposed in [8],
we take the weight function, W I , as a top hat function
in redshift only:

W I (z) ≡

{
1 if z ∈ I
0 if z /∈ I,

(7)

the tomographic bin associated with redshift region I.

Taking the Limber approximation [9], the U -matrix
becomes:

U` (r, k) =
Fk (r, ν (k))

ka (ν (k))

√
π

2 (`+ 1/2)
P 1/2 (k, ν (k)) ,

(8)

where ν (k) ≡ `+1/2
k . This is a good approximation for

` > 100 [10].

B. The Lensing Kernel for Ωk 6= 0

In a spatially-curved universe, the expression for the
lensing kernel in equation (5) must be replaced by the
more general expression:

FK (r, r′) ≡ fk (r − r′)
fk (r) fk (r′)

, (9)

where fk(r) is the co-moving angular distance [11]. This
is given by:

fK (r) ≡


K−1/2sin

(
K1/2r

)
if K > 0

r if K = 0.

(−K)
−1/2

sinh
(

(−K)
1/2

r
)

if K < 0.

(10)
where the curvature, K, is defined as K ≡
−
(
H0/c

2
)

Ωk, and Ωk is the fractional dimensionless
energy density of curvature in the Universe.

C. The Projection Kernel for Ωk 6= 0

In a spatially-flat universe, the gravitational potential
at a time labeled by the redshift z, Φ (r; z), is related
to the underlying density field, δ (r; z), by the Poisson
equation:

∇2
rΦ (r; z) =

3ΩmH
2
0

2a (t)
δ (r; z) , (11)

where ∇2
r is the Laplacian associated with a spatially-

flat universe.
The potential, Φ (r; z), in the observer’s frame is given

in a coordinate system defined by two angles on the sky
and a radial distance denoted by (r, θ, φ). Meanwhile
the density field is in rectilinear coordinates. To relate
the two, and hence find the lensing spectra in terms of
the matter power spectrum, we expand the potential in
spherical Bessel space:

Φ`m (r) =

√
2

π

∫
d3r Φ (r) j` (kr)Y`m (θ, φ) , (12)

where j` (kr) are spherical Bessel functions and
Y`m (θ, φ) are spherical harmonics. Then since spherical
harmonics and spherical Bessel functions are eigenfunc-
tions of the Laplace operator, we have:(

∇2
r + k2

)
j` (kr)Y`m (θ, φ) = 0, (13)

and from equation (11) the lensing potential is related
to the density field in harmonic space by:

Φ`m (r; z) = −3ΩmH
2
0

2k2a (t)
δ`m (r; z) . (14)

From this it is possible to derive the expression for the
cosmic shear power spectrum. Since Bessel functions
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relate the lensing potential in rectilinear coordinates to
a projected shear signal on the sky, we refer to j` (kr) as
the projection kernel. In the final expression for the cos-
mic shear power spectra, the projection kernel is found
in the U -matrix (see [12] for a full derivation).

Meanwhile in a spatially-curved universe, we must
take the Laplacian associated with the curved
Robertson-Walker metric [13] in equation (11). Hence
the projection kernel must change too. In particu-
lar spherical Bessel functions must be replaced by hy-

perspherical Bessel functions, Φβl (r), because they are
eigenfunctions of the the Laplace operator in a spatially-
curved cosmology. That is:(

∇2
SK(χ) + (ck)2

)
Φβ` (χ)Y`m (θ, φ) = 0, (15)

where β ≡
√

(ck)2 +K, χ = r/c and

SK (χ) ≡


sinχ if K > 0

χ if K = 0

sinhχ if K < 0.

(16)

Following the same argument used in the spatially-flat
case, we find the hyperspherical Bessel functions enter
the U -matrix, in place of the normal spherical Bessel
functions, as the projection kernel.

The Limber approximation also has to be generalized
to spatially-curved cosmologies [14]. In this case the
Limber-approximated U -matrix becomes:

U` (r, k) =

(
1− K̂ `2

β2

)− 1
4

Uflat
` (r, k) , (17)

where K̂ is the sign of the curvature K, and Uflat
` (r, k)

is the Limber approximated U -matrix for a spatially-flat
universe defined in equation (8).

III. THE GLASS CODE

We now describe the GLaSS code that can compute
all the power spectra previously described.

A. Description and Run Options

GLaSS is a flexible code written in Python and it is
fully integrated into the Cosmosis modular cosmolog-
ical pipeline [15]. The code is provided with Python
wrappers and cosmological information can be read di-
rectly from the Cosmosis pipeline or from an external
source.

There are numerous run-mode options. The user can
choose between several weights. These include: the
top hats associated with tomographic binning with an
equal number of galaxies per bin or equally spaced to-
mographic bins in redshift, the spherical Bessel weight,

or a customized weight provided by the user. The num-
ber of tomographic bins can also be varied. The user
can specify which `-modes to sample over a prescribed
redshift range. The package is distributed with default
functional forms for the radial distribution of galaxies,
n(z), and photometric redshift error p (z|z′). These are:

p (z|zp) ≡
1

2πσz (zp)
e
− (z−ccalzp+zbias)

2

2σzp , (18)

with ccal = 1, zbias = 0 and σzp = A (1 + zp), with
default value is A = 0.05 [16] and

n (zp) ∝
a1

c1
e
− (z−0.7)2

b21 + e
− (z−1.2)2

d21 , (19)

with default values (a1/c1, b1, d1) = (1.5/0.2, 0.32, 0.46)
[17]. It is possible for the user to provide custom func-
tional forms too.

The Limber approximation can be turned on or off.
Since the Limber approximation is less accurate at low-`
[10], it can be turned on for any chosen ` > `Lim, for a
specified value of `Lim.

Finally it is possible to independently turn the
spatially-curved lensing kernel and projection kernel ap-
proximations on or off; however later we show these
approximations have negligible impact. Hyperspherical
Bessel functions are computed with a Python wrapper
that calls CLASS [18]. Details about the implementa-
tion of the hyperspherical Bessel functions in CLASS are
given in ([19] and [14]).
GLaSS has been compared to the spherical Bessel code

used in [20] and gives very similar output when using
the spherical Bessel weight (Spurio Mancini et al. in
prep).

B. Computational Choices

Several numerical choices have been implemented in
GLaSS to reduce the computation time.

Values of the Bessel functions, j` (x), are computed
just once and stored in a 2D look up table in ` and
x. The values of j` (kr), can then found as needed. We
sample sufficiently densely in x so that final lensing spec-
tra is not affected above machine precision. Compress-
ing the data in this way reduces memory requirements
and was used before in [13, 21]. In the hyperspherical
case, it is not possible to compress the data to a 2D-
array. In this case the hyperspherical Bessel functions
are computed on the fly, slowing down the total compu-
tation time.

Even though the Bessel functions need only be com-
puted once, the computation of these has also been op-
timized in GLaSS. For a given argument x, GLaSS com-
putes and stores all j`(x) for all `-modes simultane-
ously using Miller’s algorithm which is based on recur-
rence relations and implemented in the GNU Scientific
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Library [22], and called using ctypesGSL. If the max-
imum ` is too high, Miller’s algorithm suffers from
underflow. GLaSS avoids this by first sparsely sam-
pling the x-range to determine a maximum `max (x), for
each x, which is defined as the `-value past which the
Bessel functions fall below machine precision. GLaSS
sets j`(x) = 0 for all ` > `max (x).

As the Bessel functions are pre-computed, the major-
ity of the computation time is taken by evaluating the
nested integrals in equations (1) - (4). In GLaSS all these
are evaluated using matrix multiplications on a grid in
r and k. For example the U -matrix can be written as a
matrix multiplication given by:

U` (r, k) ≈
∑
r′

A (r, r′)B (r′, k) , (20)

A (r, r′) ≡ ∆r′
FK(r,r′)
a(r′) , where ∆r′ is the spac-

ing the spacing of the grid in r′ and B (r, r′) ≡
j` (kr′)P 1/2 (k; r′) .

All matrix multiplications in GLaSS are implemented
using the numpy.dot function. This is one of the
few functions that releases the Global Interpreter Lock
in Python, so the matrix multiplications are paral-
lelized when numpy is linked to a linear algebra library
such as BLAS (Basic Linear Algebra Subprograms),
Math Kernel Library (MKL) or Apple Accelerate.
There are also MPI run-mode options for the Monte
Carlo samplers in Cosmosis, which can be used to fur-
ther distribute the workload over multiple cores.

The final speed improvements comes from making the
Limber approximation. Since the Bessel functions oscil-
late quickly, particularly for high-`, making the Limber
approximation reduces the size of the computation grid
needed to accurately evaluate the U -matrix. Meanwhile
GLaSS can simultaneously turn the Limber approxima-
tion off at low-` so that accuracy is not lost at these
large angular scales where the Limber approximation is
invalid.

IV. RESULTS

We now present results on the GLaSS computational
scaling, and the impact of the spatially-flat universe ap-
proximation.

A. GLaSS Module Timing

We now present the results of several speed tests using
GLaSS. All results cited are for 10-bin tomography with
an equal number of galaxies per bin sampling 50 `-modes
below `max = 3000 on a single 2.7 GHz Intel i5 Core
on a 2015 Macbook Pro with 8 GB of RAM.

It takes 28 seconds to compute all the Bessel function
data, but this must only ever be computed once. This
shows how vital it is to pre-compute the Bessel data.

102 103 104

Resolution (N)

100

101

102

ti
m

e
 (
s)

FIG. 1. Time to compute 50 `-modes in GLaSS against grid
resolution N (i.e. number of tomographic bins, or k-modes
in 3D cosmic shear) on a single 2.7 GHz Intel i5 Core.
Spectra for resolutions up to N = 400 can all be computed
in less than 1.5s. This is a sufficient resolution to evaluate
the tomographic cosmic shear power spectra and recover all
information from the 3D shear field (Taylor et al. 2018). At
high-`, the computation time, t, is dominated by the matrix
multiplications and hence scales as t ∝ N2.87.

The lensing spectra are computed on an N ×N grid,
where N are the number of tomographic bins, where
the diagonal part are the auto-correlation power spec-
tra and the off-diagonal are the cross-correlation power
spectra. A plot of the computation time versus the grid
resolution, N , is shown in Figure 1. The Limber ap-
proximation is assumed for ` > 100. For N < 300, it
takes less than a second to compute the lensing spectra.

As the resolution is increased beyond N = 600, the
computation time, t, follows the power law t ∝ N2.87.
This reflects the fact that the computation time be-
comes dominated by the nested matrix multiplications.
Naively matrix multiplications scale as O

(
N3
)

because

all N2 elements of the first matrix must be multiplied
by N elements in the second matrix. Our code does
slightly better and scales as O

(
N2.87

)
because it uses

the highly optimized numpy.dot routine.

It was shown in (Taylor et al. 2018) that a resolution
of N = 400 is sufficient to capture nearly all the lensing
kernel and power spectrum information. Meanwhile a
resolution of N = 2000 is required to capture 80% of the
information when using the spherical Bessel weight and
an extremely high resolution of N = 5000 is needed to
capture 97% of the information for this choice of weight
(Taylor et al. 2018).
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FIG. 2. The cross-correlated lensing power spectrum be-
tween the 9th and 10th tomographic bins. 10-bin tomogra-
phy with an equal number of galaxies per bin, is used. The
Limber approximation is taken for ` > 100. Black: The
fiducial cosmic shear power spectrum using the spatially-
flat lensing kernel and spatially-flat Bessel functions. The
coloured lines show the absolute value of the difference
between the fiducial power spectra and different combina-
tions of the spatially-curved lensing kernel and hyperspheri-
cal approximations turned on and off. Dashed lines are for
|Ωk| = 0.08; this is the expected 1σ constraint on Ωk from
Stage IV cosmic shear experiments alone. Solid lines are
for |Ωk| = 0.005; this is the Planck Prior. Red: Spatially-
curved lensing kernel and spatially-flat Bessel functions.
Green: Spatially-flat lensing kernel and spatially-curved
Bessel functions. Blue: Spatially-curved lensing kernel and
spatially-curved Bessel functions.

B. Impact of the Flat Universe Approximation on
Lensing Spectra

We compute the cosmic shear power spectra with all
combinations of the spatially-flat Bessel function ap-
proximation and spatially-flat lensing kernel approxi-
mation turned on or off. The Limber approximation
is used for ` > 100 and we use the spatially-curved gen-

eralization when the spatially-curved lensing kernel is
turned on. Ten bin tomography with an equal number
of galaxies per bin is used over a 15, 000 degree survey
with 30 galaxies per square arcminute mimicking the
Euclid wide-field survey. We take the lensing spectrum
generated using spatially-flat lensing and projection ker-
nels, as the fiducial model since all studies to date have
used this approximation.

All spectra are computed using the same flat fidu-
cial cosmology with: (Ωm,Ωk,Ωb, h0, ns, As, τ) =(
0.315, 0.0, 0.04, 0.67, 0.96, 2.1× 109, 0.08

)
. The

linear power spectrum is generated using CAMB [23] and
the non-linear part is generated using HALOFIT [24].

The cross-correlated lensing power spectrum between
the two largest tomographic bins is shown in Figure 2.
These bins were chosen because the effects of spatial
curvature are maximal in the highest redshift bins and
the signal-to-noise in the auto-correlation of the highest
redshift bin is relatively small due to shot noise, whereas
the cross-correlation is noise-free. The absolute value of
the difference between the fiducial spectrum and spectra
with various combinations of the spatially-flat lensing
kernel and spatially-flat Bessel functions turned on or
off are shown in the colored lines. The dashed lines are
for Ωk = 0.08. This is the expected 1σ constraints on
Ωk from a Euclid-like experiment [25]. The solid lines
are used for |Ωk| = 0.005. This is the Planck 2σ prior on
|Ωk| [26]. Both are extremely conservative overestimates
of constraints on curvature as multi-probe constraints
place 100 |Ωk| < 0.7 [27].

For the |Ωk| = 0.005 case the impact of changing the
lensing and projection kernels is negligible. The lens-
ing spectrum is impacted by less than 0.2%. This is
similar to the impact of the Limber approximation at
` = 1000 [10]. There is a bump in the solid green line
that gives the difference between the fiducial spectrum
and the spectrum with the curved-sky projection ker-
nel and the flat-sky lensing kernel. This is because we
take the Limber approximation and its spatially-curved
equivalent above ` = 100. The relative 1% bump in
the green line at ` = 100 is consistent with the error
due to the Limber Approximation at this `-mode [10],
that we see in this plot since the error is caused by the
spatially-flat approximation is similarly small.

For the |Ωk| = 0.08 case changing the projection ker-
nel has an extremely similar impact as in the |Ωk| =
0.005 case, that is the dashed and solid green lines are
very similar. This is expected since the magnitude of
|K| only impacts the projection kernel from the defi-

nition of β =
√

(ck)2 +K used in the hyperspherical

Bessel function Φβ` (r). The curvature, K, is negligible
in this expression except when k is small. Lensing is
sensitive to these small-k modes in the power spectrum
at small ` (Taylor et al. 2018). This is precisely where
there is a difference between the |Ωk| = 0.08 and the
|Ωk| = 0.005 case.

Using the spatially-curved lensing kernel in the |Ωk| =
0.08 case has a larger impact; the difference is indicated
by the dashed blue lines. Above ` = 100 changing the
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lensing kernel results in a 1% change from the fiducial
case, but never more than 2%. This is similar to the
change in power due to the Limber approximation [10]
at ` = 100. However changing the lensing kernel impacts
all `-modes. Thus, to avoid any risk of bias in a future
survey we recommend either enforcing the conservative
Planck bound: |Ωk| < 0.005, or using the full spatially-
curved lensing kernel. This comes at little additional
computational cost since we showed in the previous sec-
tion that the lensing computation time is dominated by
integration.

V. CONCLUSION

We have presented the GLaSS code that computes gen-
eralized cosmic shear power spectra. Spherical Bessel
and tomographic lensing spectra with an equal num-
ber of galaxies per bin and equal redshift run-mode op-
tions are available. More generally GLaSS is capable of
computing the lensing spectra with any data weighting.
This should prove useful for determining the optimal
weight for shear data in upcoming surveys.

GLaSS is fast. Using the Limber approximation,
GLaSS can compute a 10-bin tomographic lensing spec-

tra for a single cosmology, sampling 50 `-modes, in less
than 0.4s. For Stage IV experiments where the Lim-
ber approximation must be dropped below ` < 100, the
same spectra is computed in 1.3s.

Using GLaSS we have tested the Spatially-Flat Uni-
verse Approximation, which is implicitly assumed in all
cosmic shear studies to date. We find this is an accu-
rate approximation and it is unnecessary to compute the
full expression for upcoming surveys provided a conser-
vative bound of |Ωk| < 0.005 is enforced. For cosmic
shear surveys that do not impose any external bound
on Ωk, we recommend using the full spatially-curved
lensing kernel. This comes at little additional computa-
tional cost and ensures that spatial-curvature will only
bias the lensing spectra by < 0.1% from the projection
kernel. It is therefor not necessary to account for the
effects of spatial curvature on the projection kernel.
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