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Abstract: We introduce a novel statistic to probe the statistics of phases of Fourier modes

in two-dimensions (2D) for weak lensing convergence field κ. This statistic contains com-

pletely independent information compared to that contained in observed power spectrum.

We compare our results against state-of-the-art numerical simulations as a function of source

redshift and find good agreement with theoretical predictions. We show that our estimator

can achieve better signal-to-noise compared to the commonly employed statistics known as

the line correlation function (LCF). Being a two-point statistics, our estimator is also easy

to implement in the presence of complicated noise and mask, and can also be generalised to

higher-order. While applying this estimator for the study of lensed CMB maps, we show that

it is important to include post-Born corrections in the study of statistics of phase.
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1 Introduction

The weak lensing surveys which include Canada-France-Hawaii Telescope(CFHTLS)1, PAN-

STARRS2, Dark Energy Surveys (DES)3[1], Prime Focus Spectrograph4, WiggleZ5[2], BOSS6[3],

KiDS[4] and Subaru Hypersuprimecam survey7(HSC) [5] are already providing important

cosmological insights. The future large scale structure (LSS) surveys Euclid8[6], Rubin Ob-

servatory9[7] and Roman Space Telescope10 list weak lensing as their main science driver and

are expected to take us beyond the standard model of cosmology [8] by answering some of the

most profound questions regarding the nature of dark matter and dark energy (equivalently

the modified theories of gravity)[9, 10] and nature of neutrino mass hierarchy [11].

Weak lensing observations target the low-redshift universe and small scales where the

perturbations are in the nonlinear regime and statistics are non-Gaussian [12]. Many different

estimators exist which probe the higher-order statistics of weak lensing maps [13]. These

1http://www.cfht.hawai.edu/Sciences/CFHLS
2http://pan-starrs.ifa.hawai.edu/
3https://www.darkenergysurvey.org/
4http://pfs.ipmu.jp
5http://wigglez.swin.edu.au/
6http://www.sdss3.org/surveys/boss.php
7http://www.naoj.org/Projects/HSC/index.html
8http://sci.esa.int/euclid/
9http://www.lsst.org/llst home.shtml

10https://roman.gsfc.nasa.gov/
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include the well known real-space one-point statistics such as the cumulants [14] or their

two-point correlators also known as the cumulant correlators as well as the associated PDF

[15] and the peak-count statistics [16]. In the harmonic domain the estimators such as the

Skew-Spectrum[17], Integrated Bispectrum [18] kurt-spectra [19], morphological estimator

[20], integrated tripsectrum [21], Betti number [22], extreme value statistics [23], position-

dependent PDF [24], density split statistics [25], response function formalism [26] estimators

for shapes of the lensing bispectrum [27] are some of the statistical estimators and formalism

recently considered by various authors in the context of understanding cosmological statistics

in general and weak lensing in particular.

The power spectrum (equivalently two-point correlation function) and bispectrum (equiv-

alently three-point correlation function) depend differently on the cosmological parameters.

Thus a combined analyses of these two different statistics allow us to break degeneracies and

obtain tighter constraints on the parameter values [28, 29].

The gravitational clustering in the quasilinear and nonlinear regime generates coupling

of Fourier modes that results in correlation of their phases [30]. The power spectrum does

not contain any phase information [31]. Notable initial work on statistical evolution of phases

of the Fourier modes in gravitational clustering in the quasilinear regime can be found in

[32, 33]. These studies relied on a perturbative framework and were tested against numerical

simulations [34]. A universal behavior in evolution of phases of the Fourier modes in the

nonlinear regime was reported in [35].

In recent years an estimator known also as the line correlation function (LCF) to measure

for three-point (third-order) phase correlations was introduced in [36] (also see [37]). This was

used in many different contexts. The possibility of improving the cosmological constraints us-

ing phase correlations were studied in [38, 39]. In the context of redshift-space distortions this

was used in [40]. The growth rate of perturbation were probed in [41]. One of the motivation

in this paper is to introduce the third-order phase correlation functions for projected surveys

in general and weak lensing surveys in particular. We introduce third-order estimators using

both two- and three-point statistics.

We note here in passing that in addition to the summary statistics listed above, in re-

cent years many novel techniques have gained popularity. These include Bayesian hierarchical

modelling, likelihood-free or forward modelling approaches. However, it is important to realise

that many of these methods often rely on simulations that are based on lognormal approx-

imation or high-order Lagrangian theories and are only approximate compared to accurate

ray tracing simulations which can be rather expensive (however, see also [42, 43]).

At leading order the LCF takes contributions from the bispectrum. However, at smaller

separations, it also take contribution from higher-order statistics. The perturbative treatment

breaks down at smaller separation. The LCF encodes information that is highly complemen-

tary to that contained in the power spectrum. Next, we will introduce a two-point statistics

also known as cumulant-correlator which can probe phase bispectrum with a higher signal-

to-noise.

The LCF has also been employed to distinguish various morphological types of collapsed
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objects [37]. In addition to the LCF other real space triangular configurations (TCF) have

been considered for the study of third-order phase statistics, e.g., [44] employed TCF to

probe the characteristic scale of ionized regions during the epoch of reionization from 21cm

interferometric observations.

This paper is organised as follows. In §2 we introduce the weak lensing bispectrum. In

§3 we briefly review the modelling of the third-order phase statistics. In §4 we discuss our

results. The conclusions are drawn in §5.

2 Weak Lensing Bispectrum

The projected weak lensing convergence κ is a line-of-sight integration of the underlying three-

dimensional (3D) cosmological density contrast δ. The κ(θ) at a position θ can be expressed

as follows:

κ(θ) =

∫ rs

0
dr ω(r) δ(r,θ); ω(r) =

3ΩMH
2
0

2c2a

dA(r − rs)dA(r)

dA(rs)
. (2.1)

Here dA(r) is the comoving angular diameter distance at a comoving distance r. The kernel

ω(r) encodes geometrical dependence; a is the scale factor, H0 is the hubble constant and

ΩM is the cosmological density parameter. dA(r) and dA(rs) are comoving angular diameter

distances at a comoving distances r and rs. We have assumed all sources to be at a single

source plane at a distance rs.

The power spectrum P κ(l) and the bispectrum Bκ(l1, l2, l3) for the convergence maps are

defined through the following expression :

〈κ(l1)κ(l2)〉 = (2π)2δ2D(l1 + l2)P κ(l1); |li| = li (2.2a)

〈κ(l1)κ(l2)κ(l3)〉 = (2π)2δ2D(l1 + l2 + l3)Bκ(l1, l2, l3). (2.2b)

The two dimensional Fourier transform of κ(θ) is denoted as κ(l) with l being the two-

dimensional wave vector. we denote the two-dimensional Dirac delta function as δ2D. We will

use Pδ and Bδ to denote the power spectrum and bispectrum respectively of the underlying

three dimensional cosmological density contrast δ. In the tree level standard perturbation

theory the bispectrum Bδ(k1,k2,k3) can be expressed in terms of the kernel F2(k1,k2) and

power spectrum as follows [30]:

BPT
δ (k1,k2,k3) = PL

δ (k1)PL
δ (k2)F2(k1,k2) + cyc.perm. (2.3a)

F2(k1, l2) =
5

7
+

1

2

[
k1

k2
+
k2

k1

](
k1 · k2

k1k2

)
+

2

7

(
k1 · k2

k1k2

)2

; ki = |ki|. (2.3b)

The perturbative bispectrum as BPT
δ which depends on the linear power spectrum PL. Here,

ki represents 3D wave vectors and their moduli are represented as ki. In the flat-sky approx-

imation, the convergence power spectrum P κ and bispectrum Bκ can be expressed in terms
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of the underlying power spectrum Pδ and Bδ using the following line-of-sight integrations:

P κ(l) =

∫ rs

0
dr
ω2(r)

d2
A(r)

Pδ

(
l

dA(r)
; r

)
; (2.4a)

Bκ(l1, l2, l3) =

∫ rs

0
dr
ω3(r)

d4
A(r)

Bδ

(
l1

dA(r)
,

l2
dA(r),

,
l3

dA(r)
; r

)
. (2.4b)

In the highly nonlinear regime many different halo-model based fitting functions have been

proposed. We will use the most recent fitting function presented in Ref.[45] known to be

more accurate compared to the previous fitting functions. We will use these expressions in

our calculation for the Line Correlation Function (LCF) for the κ field. Notice that bispectrum

only represents the leading contribution. Higher-order correction also get contributions from

higher-order statistics such as the trispectrum which we have ignored in our study,

For the validation of our theoretical results we use simulation that adopted cosmological

parameters consistent with the WMAP 9 year result Ωm = 1 − ΩΛ = 0.279, Ωcdm = 0.233,

Ωb = 0.046, h = 0.7, σ8 = 0.82 and ns = 0.97

3 Third-order Phase Statistics in Projection

We will introduce the two-point correlation function ξ(θ) of the weak lensing convergence κ

through the following expression:

ξ(θ) = 〈κ(θ0)κ(θ0 + θ)〉 =
1

4π

lmax∑
2

(2l + 1)ClPl(cos θ) ≈ 1

2π

lmax∑
2

l ClJ0(lθ). (3.1)

Here Pl is the Legendre polynomial and l represents the angular harmonics. Also, J0 rep-

resents the Bessel Function of order zero of the first kind. The angular power spectrum Cl
of convergence κ is identical to Pκ(l) for the flat-sky approximation. We will specialise the

discussion to weak lensing convergence κ in the following section, For the purpose of discus-

sion here κ is a generic two-dimensional (2D) field defined over the celestial sphere. We will

consider a flat patch of the sky for our discussion. The position vector θ is defined using the

polar angle φ and Cartesian unit vectors i and j:

θ = θ( î cosφ+ ĵ sinφ) (3.2)

Next we will consider two third-order statistics in projection.

3.1 Line Correlation Function in Projection

We will denote the LCF as L2(θ) which is defined through the following expression as a

function of the angular scale θ is

L2(θ) = 〈ε(θ0 + θ)ε(θ0)ε(θ0 − θ)〉. (3.3)
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Figure 1: The left-panel depicts an all-sky convergence or κ(θ) map for source redshift

z = 0.5 whereas the right-panel shows the corresponding phase ε(θ) (defined in Eq.(3.4)) map

for the same source redshift. We use the publicly available maps discussed in [46].

The LCF is a angle-averaged three-point collapsed correlation function where the three-points

are in a collinear configuration. The two outer points are equidistant from the central point

situated at θ0 at a distance θ. As represents the survey area. Assuming isotropy and homo-

geneity the estimator L(θ) depends only on the separation angular scale θ and does not de-

pend on the position angle θ0. We consider the following convention for the Fourier transform

relating ε(l) and ε(θ). Where, ε(θ) is a real field constructed from the phases ε(l) of the con-

vergence map and is constructed from the κ(l) and its amplitude |κ(l)|, i.e., ε(l) = κ(l)/|κ(l)|.
The two-dimensional wave vector is denoted by l. Then

ε(θ) =

∫
d2l

(2π)2
exp(θ · l)ε(l)W (l). (3.4)

The W (l) represents the smoothing window. We will not consider observational mask. The

real-space statistics can be estimated by constructing non-overlapping square patches outside

the masked region. The three-point correlation function of ε(θ) can be expressed as follows:

〈ε(l1)ε(l2)ε(l3)〉 ≡ (2π)2Bε(l1, l2, l3)δ2D(l1 + l2 + l3). (3.5)

The LCF in terms of the bispectrum can be expressed as follows:

L2(θ) =

∫
dφ

2π

∫
d2l1

(2π)2

∫
d2l2

(2π)2

∫
d2l3

(2π)2
〈ε(l1)ε(l2)ε(l3)〉

× exp i[l1 · θ0 + l2 · (θ + θ0) + l3 · (θ − θ0)]. (3.6)

Following the derivation in [32, 33], the three-point correlation function of the phase can be

written in terms of the convergence bispectrum Bκ(l1, l2, l3)

〈ε(l1)ε(l2)ε(l3)〉 =
(2π)2

As

(√
π

2

)2
Bκ(l1, l2, l3)√

Pκ(l1)Pκ(l2)Pκ(l3)
δ2D(l1 + l2 + l3) (3.7)
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Using Eq.(3.7) in Eq.(3.3) we arrive at the following expression:

L2(θ) =

∫
d2l1

(2π)2

∫
d2l2

(2π)2

Bκ(l1, l2, l1 + l2)√
Pκ(l1)Pκ(l2)Pκ(|l1 + l2|)

∫
dφ

2π
exp [i(l1 − l2).θ] (3.8a)

L2(θ) =

∫
d2l1

(2π)2

∫
d2l2

(2π)2

Bκ(l1, l2, l1 + l2)√
Pκ(l1)Pκ(l2)Pκ(|l1 + l2|)

J0(|l1 − l2|θ). (3.8b)

We have used the following Bessel’s first integral11 (Eq.(71) of Mathsworld) to reduce Eq.(3.8a).

Jn(x) =
1

2π in

∫ 2π

0
exp[i(x cos τ + inτ)]dτ. (3.9)

Here, Jn denotes the Bessel functions of the first kind of order n.

In addition to the LCF of phases introduced in Eq.(3.8a)-Eq.(3.8b) we will also consider

the following associated estimator:

Π2(θ) =

∫
d2l1

(2π)2

∫
d2l2

(2π)2
Bκ(l1, l2,−l1 − l2)

∫ 2π

0

dφ

2π
exp [i(l1 − l2).θ]. (3.10a)

Π2(θ) =

∫
d2l1

(2π)2

∫
d2l2

(2π)2
Bκ(l1, l2,−l1 − l2)J0(|l1 − l2|θ). (3.10b)

The derivation of Eq.(3.10b) follows the same steps as the derivation of Eq.(3.8b). We have

used these estimators as an intermediate step before applying the estimators presented in

Eq.(3.8b). However, they can be used as an independent non-Gaussianity estimator for the

convergence κ - similar to other data compression techniques, e.g., skew-spectrum

The Effective Field Theory (EFT) provides a framework to extend the SPT results to

smaller scales. Including the additional counter-terms from EFT in the expression of the

kernel F2 will extend the validity of results based on SPT to smaller angular scales not just

for gravity induced non-Gaussianity but also for primordial non-Gaussianity [47].

Generalisation of our work to include tomography can be done by suitable modification

of the bispectrum and then using them in subsequent expressions. However, it would be more

interesting to do a complete 3D analysis of phases using spectroscopic or photometric redshift

data. We will present the result of such an analysis elsewhere.

3.2 Cumulant Correlators of Phases in Projection

The line correlation function considers a collapsed configuration of a triangle with equidistant

points from the central location. The other collapsed configuration that is commonly used in

the literature was introduced in [49] in the context of density contrast in 3D and are known

as the cumulant correlators. The two-to-one correlator defined below is of the lowest-order

in the family of cumulant correlators and can be constructed cross-correlating a squared ε(θ)

map with itself:

11Bessel’s first integral
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Figure 2: The two-point correlation function ξ(θ) defined in Eq.(3.1) for the convergence

map κ is shown as a function of θ. The dot-dashed, dashed and dotted lines correspond to

the theoretical predictions for various redshifts as indicated. The solid lines correspond to the

estimates from numerical simulations. The maps used were degraded to Nside = 2048 before

computing the correlation function.
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Figure 3: The line correlation function Π2(θ) is being plotted as a function of θ (in arcmin).

The solid lines correspond to theoretical predictions defined in Eq.(3.10a)-Eq.(3.10b). We

use a fitting function to model the underlying bispectrum. The dashed lines are based on

perturbation theory (PT) results Eq.2.3b. The points are estimates from simulated all-sky

weak lensing maps. Panels from left to right correspond to zs = 2.0, 1.0 and 0.5 respectively

We use the fitting function proposed by [45] for the bispectrum. The simulation results

show an ensemble average computed from 10 all-sky maps using publicly available software

TreeCorr[48].
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Figure 4: The line correlation function L2(θ) defined in Eq.(3.8a)-Eq.(3.8b) is being plotted

as a function of θ (in arcmin). From left to right we show results for source redshifts zs = 2.0,

1.0 and 0.5. The theoretical predictions correspond to Nside = 2048. The dashed-lines

correspond to results computed using perturbation theory and the solid lines are obtained

using a non-perturbative fitting function. We use the fitting function proposed by [45] for

the bispectrum. The simulation results show an ensemble average computed using 10 all-sky

maps. The three-point correlation function L2(θ) was computed from the phase maps using

publicly available software TreeCorr[48].

Cε21(θ) = 〈ε2(θ0)ε(θ0 + θ)〉 =
1

4π

∑
`

(2`+ 1)P`(cos θ)Sε` . (3.11)

Here Sε` is the skew-spectrum of the ε(θ) map constructed from its bispectrum Bε

Sε(l2) =

∫ ∞
0

l1dl1
2π

∫ 1

−1

dµ

2π
√

1− µ2

Bκ(l1, l2,−(l1 + l2))√
Pκ(l1)Pκ(l2)Pκ(|l1 + l2|)

(3.12a)

Sε` =
1

4π

∑
`1`3

Bκ
`1`2`√

Pκ(l1)Pκ(l2)Pκ(l)
(2`1 + 1)(2`2 + 1)

(
`1 `2 `

0 0 0

)2

(3.12b)

Here µ denotes the cosine of the angle betwwn l1 and l2 i.e. µ = (l1 · l2)/(l1l2) with li = |li|.
Here the quantity in parentheses is the well-known Wigner-3j symbol. For more detailed

derivation of flat-sky vs. all-sky correspondence see Appendix-§A. In Appendix-§B. we have

presented generalisation to higher-order.

The interest in cumulant correlators stems from the fact that they are two-point corre-

lations but carry information about three-point statistics. They can be generalised easily to

higher order. The information content is in general different for various triangular configura-

tions. For an equilateral configuration see [44].
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Figure 5: The solid lines correspond to the skew-spectrum corresponding to the phase maps

Sε` defined in Eq.(A.9b) is being plotted as a function of θ (in arcmin). From left to right we

show results for source redshifts zs = 2.0, 1.0 and 0.5. The theoretical predictions correspond

to Nside = 2048. We use the fitting function proposed by [45] for the bispectrum. We also

show the results from perturbation theory (dashed-lines).

4 Results and Discussion

In this section we will discuss the results of our numerical investigations for various estimators

and compare them against theoretical predictions.

Maps: To validate our analytical results we use the publicly available all-sky weak lensing

maps generated by [46]12. The ray-tracing through N-body simulations were used to generate

these maps. These simulation used 20483 particles to follow the evolution of gravitational

clustering. To generate the convergence κ and the corresponding shear γ maps multiple lens

planes were used; the source redshifts used were in the range zs = 0.05−5.30. We have chosen

the maps with zs = 0.5, 1.0, 2.0 for our study. For CMB maps the lensing potentials were

constructed using the deflection angles which were used to construct the lensing potentials

and eventually the κ maps. These maps include post-Born corrections [50]. The convergence

maps were generated using an equal area pixelisation scheme in HEALPix13 format[51].

The set of maps we use in this study are generated at Nside = 4096 and were cross-checked

against higher resolution maps constructed at a higher resolution Nside = 8192, 16384 for

consistency. These maps constructed at different resolution were found to be consistent with

each other up to the angular harmonics ` ≤ 2000.

For our study, we have used high resolution maps Nside = 4096. These maps were

degraded to various lower resolution Nside = 2048 In Figure 1 we show one such map for

the source redshift zs = 0.5 (left panel) and the corresponding phase map (right panel). We

analysed these maps using publicly available software TreeCorr14 for the computation of

12http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky raytracing/
13https://healpix.jpl.nasa.gov/
14https://rmjarvis.github.io/TreeCorr/ build/html/index.html
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Figure 6: The lines correspond to the cumulant correlator Cε21(θ) defined in Eq.(3.11). is

being plotted as a function of θ (in arcmin). From left to right we show results for source

redshifts zs = 2.0, 1.0 and 0.5. The theoretical predictions correspond to Nside = 2048. We

use the fitting function proposed by [45] for the bispectrum (solid lines). The dots represent

the cumulant correlators defined in Eq.(3.11) computed from one all-sky phase map by cross-

correlating the squared phase map ε2(θ) with itself ε(θ). We have used the publicly available

software TreeCorr. Theoretical predictions correspond to the one computed using the fitting

function proposed by [45] for the bispectrum. The deviations from the theoretical predictions

at smaller angular scales is an effect of pixelisation.

two- and three-point correlation functions. The two-point correlation functions are shown in

Figure-2 for various redshifts.

LCF for κ: The line correlation function Π2(θ) defined in Eq.(3.8b) is being plotted as

a function of θ In Figure - 3. From left to right we show results for source redshifts zs = 2.0,

1.0 and 0.5. We have presented the mean results estimated from ten all-sky maps. No noise

was included in our study. Degraded maps with Nside = 2048 and 512 were respectively used

to estimate the correlation function for the range θs = 1′ − 10′ and 10′ − 100′. The fitting

function presented in [45] was used to compute the theoretical predictions.

LCF for phase: In Figure - 4 the LCF L∈(θ) is being plotted as a function of θ (in

arcmin). The solid lines correspond to the ones defined in Eq.(3.10b) and the dashed-lines

correspond to estimates from simulated all-sky weak lensing maps. Panels from left to right

correspond to zs = 2.0, 1.0 and 0.5 respectively. The dashed-lines in each panel correspond

to theoretical predictions computed using Born approximation. We have checked that the

post-Born corrections do not make any appreciable difference. We have used ten realisations

of all-sky maps to compute the numerical estimates. No noise was included. Degraded maps

with Nside = 2048 and 512 were respectively used to estimate the correlation function for

the range θs = 1′ − 10′ and 10′ − 100′. We use `max = 2Nside for our study. The theoretical

results were computed using the fitting function presented in [45].

Skew-spectrum for phase: In addition to the LCF we have also introduced the skew-
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spectrum estimator, not for κ(θ), but for the phase maps ε(θ) (denoted as Sε`) defined in

Eq.(A.9b). For the bispectrum we have used the nonlinear fitting function [45] and for the

perturbative calculations we have used the SPT result in Eq.(2.3b). We have presented three

redshifts zs = 0.5, 1.0 and 2.0 in Fig.5 in different panels as indicated. The simulation results

compare reasonably well against nonlinear predictions. We also see departure at high-` which

is a result of pixelisation. Our simulation results are derived using Nside = 2048 which are

generated by degrading maps originally created at Nside = 4096. For PT results to be valid

the maps need to be smoothed. We have also included zs = 1100.0 in our analysis which

is relevant for CMB studies. The results are plotted in Fig.5 and for CMB lensing in Fig.7.

We found that even with a single all-sky realisation we can estimate the Sε` with a very high

degree of accuracy. We have included realistic noise though it is expected from our previous

study [17] inclusion of noise will not change our findings completely.

The importance of Post-Born (PB) corrections for CMB lensing lensing, was underlined

in many recent studies, e.g., Ref.[17]. While such corrections do not make any significant

contribution they do play important role for high redshift CMB studies. In Fig.7 we have

shown the nonlinear results with and without PB corrections. Inclusion of Post-Born cor-

rections is important to reproduce the simulation results. The maps used were of resolution

Nside = 2048. Higher-order generalisations of L2 is presented in §B.

Cumulant correlators for phase: The cumulant correlators (CCs) carry equivalent in-

formation compared to the skew-spectrum Sε` as they can be constructed from skew-spectrum.

The theoretical cumulant correlator Cε21(θ) using Eq.(3.11). The numerical results were com-

puted using the TreeCorr. The results are shown in Fig.6. This alows computation of CCs

without broad binning as was the case for LCF. The deviation from theoretical prediction

in the low-θ regime is related to the pixelisation effect. A comparison with the results pre-

sented for L2 in Fig.4 confirms very high S/N in Cε21(θ). The generalisation to higher-order

is straightforward and can by cross-correlating p-th power of ε(θ),i.e., εp(θ) against its q-th

power, i.e., 〈εq(θ1)εq(θ2)〉.

5 Conclusions and Future Prospects

The primary aim of this paper was to introduce statistics of Fourier phases in the context of

weak lensing studies. We have introduced the three-point phase correlation LCF to probe the

non-Gaussianity in weak lensing convergence maps used in the study of galaxy clustering L2.

In addition, an associated three-point statistics Π2 was also introduced for probing statistics of

κ maps. We have used a set of state-of-the-art all-sky simulations of weak lensing convergence

maps to test our theoretical results as a function of source redshift. We have generalised both

Π2(θ) and L2(θ) to higher-order. Next, we have adopted the cumulant correlator typically

used for 3D density field and 2D convergence maps for statistics phases. We showed that

available theoretical models can reproduce the numerical results with reasonable accuracy

and our results can be used to select the range to retain in order to maintain a given level

of theoretical accuracy. While we have focussed on weak lensing convergence, the statistical

– 11 –
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Figure 7: The skew-spectrum Sε` corresponding to phase maps ε(θ) for the source red-

shift zs = 1100 is plotted as a function angular wave number `. Three different curves

are shown Nonlinear (solid-lines), Linear (dotted-lines) and Nonlinear with Post-Born cor-

rections included (dashed-lines) along with results from simulations. The simulation results

correspond to an ensemble average of five independent all-sky simulations. The simulations

have Nside = 2048. Theoretical results were computed using `max = 4096.

estimators presented here will be useful in other areas cosmology, e.g., galaxy clustering (in

real and redshift space) and in clustering of Lyman-α absorbers.

Several extensions are possible on the theoretical front. The Effective Field Theory (EFT)

provides a framework to extend the validility domain of the standard perturbation theory

(SPT). A formulation of the phase statistics in EFT will improve its domain of validity. It will

also be interesting to formulate the phase-statistics directly for shear. Theoretical modelling of

bispectrum generated by intrinsic alignment [52] will also be useful. The perturbative regime

is not particularly affected by gas physics. Nevertheless, k-cut filtering can be included [53]

to filter out particularly sensitive modes.

Finally, our study was performed in a rather idealized observational setting to establish

a baseline. Realistically complex follow-up studies will be presented in future. We haven’t

computed the signal-to-noise for our estimators. Any computation of the scatter will involve

modelling of higher-order correlation functions and relatively higher-dimensional integrals.

We will present such results and a Fisher-based analysis independently and jointly with the

power spectrum elsewhere.

References

[1] Cosmology from Cosmic Shear with DES Science Verification Data, The Dark Energy Survey

Collaboration, T Abbott, F. B. Abdalla, S. Allam, et al., 2016, Phys. Rev. D, 94, 022001

[arxiv/1507.0552]

– 12 –

https://arxiv.org/abs/1507.05552


[2] The WiggleZ Dark Energy Survey: Survey Design and First Data Release, Drinkwater, M. J., R.

J. Jurek, C. Blake, et al., 2010, MNRAS, 401, 14 [astro-ph/0911.4246]

[3] SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and

Extra-Solar Planetary Systems, D. J. Eisenstein, D. H. Weinberg, E. Agol, et al., 2011, AJ, 142,

72 [astro-ph/1101.1529]

[4] Gravitational Lensing Analysis of the Kilo Degree Survey, K. Kuijken, C. Heymans, H.

Hildebrandt, et al., 2015, MNRAS, 454, 3500 [arXiv/1507.00738]

[5] The Hyper Suprime-Cam SSP Survey: Overview and Survey Design Aihara H. et al., 2018,

Publications of the Astronomical Society of Japan, Volume 70, Issue SP1, S4; [arXiv/1704.05858]

[6] Euclid Definition Study Report, R. Laureijs, J. Amiaux, S. Arduini, et al. 2011,

ESA/SRE(2011)12.

[7] LSST: a complementary probe of dark energy, J . A. Tyson, D. M. Wittman, J. F. Hennawi, D.

N Spergel, 2003, Nuclear Physics B Proceedings Supplements, 124, 21 [astro-ph/0209632]

[8] Planck 2018 results. VI. Cosmological parameters, Planck Collaboration, [arxiv/1807.06209]

[9] Beyond the Cosmological Standard Model, A. Joyce, B. Jain, J. Khoury, M. Trodden, 2015,

Phys. Rep., 568, 1 [astro-ph/1407.0059]

[10] Modified Gravity and Cosmology, T. Clifton, P. G. Ferreira, A. Padilla, S. Skordis, 2012, Phys.

Rep., 513, 1, 1 [astro-ph/1106.2476]

[11] Massive neutrinos and cosmology, J. Lesgourgues, S. Pastor, 2006, Phys. Rep., 429, 307,

[astro-ph/1610.02956] [astro-ph/1507.00738]

[12] Cosmology with Weak Lensing Surveys D. Munshi, P. Valageas, L. Van Waerbeke, A. Heavens

Phys.Rept.462:67-121,2008 [arXiv/0612667]

[13] Higher order statistics of shear field: a machine learning approach C. Parroni, E. Tollet, V. F.

Cardone, R. Maoli, R. Scaramella [astro-ph/1612.02264]

[14] Weak lensing shear and aperture-mass from linear to non-linear scales D. Munshi, P. Valageas,

A. J. Barber MNRAS, 2004, 350, 77 [astro-ph/1612.02264]

[15] Cylinders out of a top hat: counts-in-cells for projected densities C. Uhlemann 2018, MNRAS,

477, 2772U [arXiv/1711.04767]

[16] Cosmological constraints with weak lensing peak counts and second-order statistics in a

large-field survey A. Peel, C.-A. Lin, F. Lanusse, A. Leonard, J.-L. Starck, M. Kilbinger

[arXiv/1612.02264]

[17] Weak Lensing Skew-Spectrum D. Munshi, T. Namikawa, T. D. Kitching, J. D. McEwen, F. R.

Bouchet 2020, MNRAS, 498, 6057 [arXiv/2006.12832]

[18] Estimating the Integrated Bispectrum from Weak Lensing Maps D. Munshi, J. D. McEwen, T.

Kitching, P. Fosalba, R. Teyssier, J. Stadel 2020, MNRAS, 493, 3985 [arXiv/1902.04877]

[19] New Optimised Estimators for the Primordial Trispectrum D. Munshi, A. Heavens, A. Cooray,

J. Smidt, P. Coles, P. Serra 2011, MNRAS, 412, 1993 arXiv/0910.3693

[20] Morphology of Weak Lensing Convergence Maps D. Munshi, T. Namikawa, J. D. McEwen, T.

D. Kitching, F. R. Bouchet [arXiv/2010.05669]

– 13 –

hhttps://arxiv.org/abs/0911.4246
https://arxiv.org/abs/1101.1529
https://arxiv.org/abs/1507.00738
https://arxiv.org/abs/1704.05858
https://arxiv.org/abs/astro-ph/0209632
https://arxiv.org/abs/1807.06209
hhttps://arxiv.org/abs/1407.0059
hhttps://arxiv.org/abs/1101.1529
hhttps://arxiv.org/abs/1610.02956
https://arxiv.org/abs/1507.00738
https://arxiv.org/abs/astro-ph/0612667
https://arxiv.org/pdf/2011.10438.pdf
https://arxiv.org/abs/astro-ph/0309698
https://arxiv.org/abs/1711.04767
https://arxiv.org/abs/1612.02264
https://arxiv.org/abs/2006.12832
https://arxiv.org/pdf/1902.04877
https://arxiv.org/abs/0910.3693
https://arxiv.org/abs/2010.05669


[21] Matter trispectrum: theoretical modelling and comparison to N-body simulations D. Gualdi, S.
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A All-sky Expressions

Our primary aim in this appendix is to develop all-sky estimators presented in the text

of the paper. Following [54–56] the spherical polar co-ordinate (θ, φ), radial co-ordinate

r = 2 sin θ/2 ≈ θ Equivalently in the harmonic domain |l| = ` and φl denotes the polar angle:

κ(θ) =
1

(2π)2

∫
κ(l) exp(il · θ)d2l ≈

∑
`m

κ`mY`m(θ) (A.1)

The flat-sky κ(l) and its all-sky harmonic counterpart κ`m are related by the following ex-

pression:

κ(l) =

√
4π

2`+ 1

∑
m

imκ`m exp(imφl) (A.2a)

κ`m =

√
2`+ 1

4π

∫
dφl
2π

exp(−imφl)κ(l) (A.2b)

The spherical harmonic basis Y`m(θ, φ) and rhe flat sky basis are related by the following

expressions:

Y`m(θ, φ) = (−1)m

√
(2`+ 1)(l −m)!

4π(`+m)!
Pm` (cos θ) exp(imφ) (A.3a)

P−m` (cos θ) = (−1)m
(l −m)!

(l +m)!
Pm` (cos θ) (A.3b)
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Using the expressions Eq.(A.3b) in Eq.(A.3a) we obtain the flat-sky counterpart of the spher-

ical harmonics:

Y`m(θ, φ) = Jm(`θ)

√
`

2π
exp(imφ). (A.4a)

If we use the following expansion of the plane wave:

exp(il · θ) =
∑
m

imJm(`θ) exp[im(φ− φl)]

≈
√

2π

`

∑
m

imY`m(θ) exp(imφl). (A.4b)

Next, we consider the case of bispectrum and related estimator:

〈κ`1m1κ`2m2κ`3m3〉c ≡ Bκ
`1`2`3

(
`1 `2 `3
m1 m2 m3

)
. (A.5)

Here the quantity in parentheses is the well-known Wigner-3j symbol which enforces the

rotational invariance. It is only non-zero for the triplets (`1, `2, `3) that satisfy the triangular

condition and `1 + `2 + `3 is even. The reduced bispectrum bκ`1`2`3 is useful in directly linking

the all-sky bispectrum and its flat-sky counterpart. For the convergence field κ, bκ`1`2`3 is

defined through the following expression:

Bκ
`1`2`3 :=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
bκ`1`2`3 . (A.6)

The flat-sky bispectrum is similarly defined through:

〈κ(l1)κ(l2)κ(l3)〉c = (2π)2δ2D(l1 + l2 + l3)Bκ(l1, l2, l3). (A.7)

The flat-sky bispectrum Bκ(l1, l2, l3) is identical to the reduced bispectrum bκ`1`2`2 for high

multipole [58]. This can be shown by using the following asymptotic relationship:

G`1m1,`2m2,`3m3 ≡
∫
dΩ̂Y`1m1(Ω̂)Y`2m2(Ω̂)Y`3m3(Ω̂)

=

√
(2`1 + 1)(2`2 + 1)(2`+ 1)

4π

(
`1 `2 `

0 0 0

)(
`1 `2 `

m1 m2 m3

)
≈ (2π)2δ2D(l1 + l2 + l3). (A.8a)

The skew-spectrum in the flat-sky is given by [57]:

S(l2) =

∫ ∞
0

l1dl1
2π

∫ 1

−1

dµ

2π
√

1− µ2
Bκ(l1, l2,−(l1 + l2))

β(l1θs)β(l2θs)β(|l1 + l2|θs). (A.9a)

S` =
∑
`1`3

bκ`1`2`.
(2`1 + 1)(2`2 + 1)

4π

(
`1 `2 `

0 0 0

)2

β`1(θs)β`2(θs)β`(θs). (A.9b)
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Here the β functions represent the smoothing window functions and µ is the cosine of the

angle between vector l1 and l2 i.e. µ = (l1 · l2)/(l1l2), where |li| = li. The skewness in terms

of these expressions is given by:∫ ∞
0

dl

2π
Sε(l) =

∑
`

(2`+ 1)S`. (A.10)

B Higher-order LCFs

In this section we consider generalisation of the third-order LCFs to higher-order. The family

of LCFs can be seen as a natural extension of two-point cumulant correlators often used in

the literature. LCFs can be thought of as three-point generalisation of two-point cumulant

correlators. The following statistics are relevant for the kappa field as well as the for the

phases. In this section we generalise the line-correlation to higher order. The fourth- and

fifth-order generalisations are as follows.

L4(θ) ≡
∫ 2π

0

dφ

2π
〈ε(θ0 + θ)ε2(θ0)ε(θ0 − θ)〉

=

∫
d2l1

(2π)2
· · ·
∫

d2l3
(2π)2

Bκ
(4)(l1, l2, l3,−l1 − l2 − l3)√
Pκ(l1) . . . Pκ(|l1 + l2 + l3|)

J0(|l2 − l3|θ) (B.1a)

We have omitted the numerical prefactor. Equivalently we can generalise Eq.(3.10b) to fourth-

order:

Π4(θ) ≡
∫ 2π

0

dφ

2π
〈κ(θ0 + θ)κ2(θ0)κ(θ0 − θ)〉

=

∫
d2l1

(2π)2
· · ·
∫

d2l3
(2π)2

Bκ
(4)(l1, l2, l3,−l1 − l2 − l3)J0(|l2 − l3|θ). (B.1b)

Here, B
(4)
κ is the trispectrum for the convergence field and is defined as follows:

〈κ(l1) · · ·κ(ln)〉 = (2π)2δ2D(l1 + · · ·+ ln)B(n)
κ (l1, · · · , ln) (B.2)

The extension to higher-order can be done in a straight-forward manner:

L5(θ) ≡
∫ 2π

0

dφ

2π
〈ε(θ0 + θ)ε3(θ0)ε(θ0 − θ)〉

=

∫
d2l1

(2π)2
· · ·
∫

d2l4
(2π)2

Bκ
(5)(l1, · · · , l4,−l1 · · · − l4)√
Pκ(l1) · · ·Pκ(|l1 + · · ·+ l4|)

J0(|l3 − l4|θ) (B.3)

There are no numerical fitting functions beyond bispectrum. Nevertheless, the possibility of

upcoming experiments to detect the higher-order correlation has fuelled development in this

area in recent years. Notice that these estimators can be useful in diectly probing galaxy

clustering in real [38] as well as in redshift space [40] with suitable modifications.
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