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Position-Dependent Correlation Function of Weak Lensing Convergence
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We provide a systematic study of the position-dependent correlation function in weak lensing convergence
maps and its relation to the squeezed limit of the three-point correlation function (3PCF) using state-of-the-art
numerical simulations. We relate the position-dependent correlation function to its harmonic counterpart, i.e.,
the position-dependent power spectrum or equivalently the integrated bispectrum. We use a recently proposed
improved fitting function, BiHalofit, for the bispectrum to compute the theoretical predictions as a function of
source redshifts. In addition to low redshift results (zs = 1.0 − 2.0) we also provide results for maps inferred
from lensing of the cosmic microwave background, i.e., zs = 1100. We include a Euclid-type realistic survey
mask and noise. In agreement with the recent studies on the position-dependent power spectrum, we find that
the results from simulations are consistent with the theoretical expectations when appropriate corrections are
included. Performing a rough estimate, we find that the (S/N) for the detection of position-dependent correlation
function from Euclid-type mask with fsky = 0.35, can range between 6 − 12 depending on the value of the
intrinsic ellipticity distribution parameter σε = 0.3−1.0. For reconstructed κmaps using an ideal CMB survey
the (S/N) ≈ 1.8. We also found that a 10% deviation in σ8 can be detected using IB for the optimistic case of
σε = 0.3 with a (S/N) ≈ 5. The S/N for such detection in case of ΩM is lower.

I. INTRODUCTION

Recently completed Cosmic Microwave Background
(CMB) experiments, such as the Planck Surveyor1[1], have
established a standard model of cosmology. Answers to
many outstanding questions however remain unclear. These
include, the nature of dark matter (DM) and dark energy
(DE), and possible modifications of General Relativity (GR)
on cosmological scales [2, 3]. In addition the sum of the
neutrino masses [4] remains unknown. It is expected that
the operational weak lensing surveys, including the Sub-
aru Hypersuprimecam survey2(HSC) [5], Dark Energy Sur-
vey3(DES)[6], KiDS[7] and near-future Stage-IV large scale
structure (LSS) surveys such as Euclid4[8], Rubin Observa-
tory5[9] and Roman Space Telescope[10], will provide an-
swers to many of the questions that cosmology is facing by
directly probing the large-scale structure and extracting infor-
mation about clustering of the intervening mass distribution in
the Universe [11]. In contrast, spectroscopic galaxy redshift
surveys such as BOSS6[12] or WiggleZ7[13] (also see Prime
Focus Spectrograph8 which is currently under development

1 Planck
2 http://www.naoj.org/Projects/HSC/index.html
3 https://www.darkenergysurvey.org/
4 http://sci.esa.int/euclid/
5 http://www.lsst.org/llst home.shtml
6 http://www.sdss3.org/surveys/boss.php
7 http://wigglez.swin.edu.au/
8 http://pfs.ipmu.jp

and the Dark Energy Spectroscopic Instruments (DESI)9 cur-
rently taking data) probe the distribution of galaxies as tracers
and generally provide a biased picture [14].

One challenge for weak lensing is that observations are sen-
sitive to smaller scales where clustering is nonlinear and non-
Gaussian [11], and are therefore difficult to model. A second
challenge is that the statistical estimates of cosmological pa-
rameters based on power spectrum analysis are typically de-
generate in particular cosmological parameter combinations,
e.g. σ8 and ΩM. To overcome these degeneracies external
data sets (e.g. CMB), and the addition of tomographic or 3D
[15] information are typically used. However, to address both
of these challenges an alternative procedure is to use higher-
order statistics that probe the nonlinear regime [16–21].

Gravitational clustering induces mode coupling that results
in a secondary non-Gaussianity that is more pronounced on
smaller scales. This has led to development of many esti-
mators for the gravity-induced (secondary) non-Gaussianity
from weak lensing surveys. These statistics include the lower-
order cumulants [22] and their correlators [23], the multi-
spectra including the skew-spectrum [24], binned estimators
[25–27], kurtosis spectra [28], Minkowski Functionals [29] as
well as the entire PDF [30]. Many of these estimators were
initially developed in the context of probing primordial non-
Gaussianity [31]. With a large fraction of sky-coverage, and
the ability to detect a high number density of galaxies, sur-
veys such as Euclid will be able to detect gravity-induced non-
Gaussianity with a very high signal-to-noise (S/N). In addition

9 http://desi.lbl.gov

http://http://sci.esa.int/planck/
http://www.naoj.org/Projects/HSC/index.html
https://www.darkenergysurvey.org/
http://sci.esa.int/euclid/
http://www.lsst.org/llst home.shtml
http://www.sdss3.org/surveys/boss.php
http://wigglez.swin.edu.au/
http://pfs.ipmu.jp
http://desi.lbl.gov
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FIG. 1. The sq3PCF ζ(θ12) defined in Eq.(4.6) for the convergence
map κ for zs = 0.5 is shown as a function of θ12. The dashed line
corresponds to the theoretical prediction. The thin solid lines corre-
spond to the estimates from individual simulated convergence maps
computed using 192 non-local patches described in section III. The
thick solid line represents the ensemble average of estimates from all
maps. A total of 40 maps were used.
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FIG. 2. Same as Fig-1 but for zs = 1.0

to lifting the degeneracy in cosmological parameters, higher-
order statistics are also important for a better understanding of
the covariance of lower-order estimators [32]. The additional
information content of the bispectrum, when added to that of
the power spectrum, can significantly reduce the errors in pa-
rameters [33–38] as well as provide a better handle on system-
atics [39]. In addition to the summary statistics and their esti-
mators described above other approaches of incorporating in-
formation regarding non-Gaussianity include likelihood based
forward modelling[40] and likelihood-free techniques [41]. In
contrast to the derived statistics, these methods directly deal
with the field variables but often rely on expensive simulations
or approximations to model gravitational dynamics.

A complete characterization and estimation of bispectrum
as well as its covariance can be demanding. As a result, a
subset of specific shapes of triangle that represent the bis-
pectrum are usually considered. Many recent papers have
focussed on estimators that are particularly sensitive to the
squeezed configuration of the bispectrum known also as the
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FIG. 3. Same as Fig-1 but for zs = 1.5
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FIG. 4. Same as Fig-1 but for zs = 2.0

Integrated Bispectrum (IB) [42]. These estimators are partic-
ularly interesting because of their simplicity, as well as their
ease of implementation [43, 44]. In previous works such esti-
mators have been used in 3D for quantifying galaxy clustering
[12], 21cm studies [45], the Cosmic Microwave Background
(CMB) in 2D [46], as well as in 1D to probe Lyman-α ab-
sorption features [47, 48]. The IB estimator has also been
applied to weak lensing [49]. Our aim here is to develop
these estimators for probing future 2D projected weak lens-
ing surveys, and in particular Euclid [8]. Instead of focussing
on the harmonic domain [49] we concentrate on the angu-
lar domain. Working in configuration space has the advan-
tage that the observational mask can be dealt with more easily
than in harmonic space. In this paper we will concentrate on
the position-dependent two-point correlation function (2PCF)
which probes the squeezed three-point correlation function
(sq3PCF). This is complementary to its Fourier counterpart,
the position-dependent power spectrum, which on the other
hand probes the squeezed configuration of the bispectrum.

This paper is organised as follows. The introductory dis-
cussion on weak lensing is presented in §II. Some key results
on position-dependent power spectrum are reviewed in §III.
Sec. §IV introduces some of our key results. The results of
comparison against simulations are presented in §V. Finally
the conclusions are drawn in §VI.
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FIG. 5. Same as Fig-1 but for zs = 1100

II. WEAK LENSING THREE-POINT CORRELATION
FUNCTION

The weak lensing convergence field κ represents a line-of-
sight integral of the underlying matter density contrast δ be-
tween the source plane at comoving distance rs (or redshift
zs) and the observer:

κ(θ, rs) =

∫ rs

0

dr ω(r, rs)δ(θ, r) , (2.1)

In our notation, throughout, θ will represent the angular po-
sition on the surface of the sky, and r denotes the comov-
ing distance. The weight ω(r, rs) appearing in the integral in
Eq.(2.1) is given by

ω(r, rs) =
3ΩM

2

H2
0

c2
dA(r)dA(r − rs)
a(r)dA(rs)

, (2.2)

where dA(r) denotes the comoving angular diameter distance,
a(r) is the scale factor, and ΩM , H0, c represent the cosmo-
logical matter density parameter, the Hubble constant and the
speed of light, respectively. We have assumed a flat cosmol-
ogy. For reviews of weak lensing, see for example [50].

We are mainly interested in the three-point correlator of
the convergence field and are thus concerned with the angle-
averaged bispectrum denoted as B`1`2`3 , which can be con-
structed using the multipoles of κ in the harmonic domain,
κ`m:

B`1`2`3 = h`1`2`3

×
∑

m1m2m3

〈κ`1m1
κ`2m2

κ`2m2
〉
(
`1 `2 `3
m1 m2 m3

)
, (2.3)

where the matrix is a Wigner 3j-symbol, and the geometrical
factor h`1`2`3 is defined by

h`1`2`3 ≡
√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
.

(2.4)
The power spectrum of κ is defined as C` ≡ 〈κ`mκ∗`m〉. The
reduced bispectrum, used in the literature is defined as fol-
lows: b`1`2`3 = B`1`2`3/h

2
`1`2`3

. In the Limber approxi-
mation, the bispectrum B`1`2`3 can be written in terms of

the matter bispectrum Bδ(k1, k2, k3), where ki are comoving
wavenumbers, as

B`1`2`3 = h2
`1`2`3

∫ rs

0

dr
ω3(r, rs)

d4
A(rs)

×Bδ
(

`1
dA(r)

,
`2

dA(r)
,

`3
dA(r)

; r

)
. (2.5)

Finally, to compute this, we use the fitting function developed
in [51]. We also incorporate the post-Born correction [52]
which introduces a significant contribution at high redshift but
has a negligible effect at low redshift [53]. We will discuss
these issues in §V.

III. POSITION-DEPENDENT POWER SPECTRUM

The integrated bispectrum represents the correlation of av-
erage of local convergence κp estimated from a survey patch
labelled by the index p and the local power spectrum esti-
mated from the same patch given by C`,p (also called position-
dependent power spectrum):

B̂` =
1

Np

∑
p

κ̄pC`,p . (3.1)

Here, Np represents the total number of patches and by con-
struction 〈C`,p〉 = C` and 〈κ̄p〉 = 0. Note that the patches
can be localised in real space or in the Fourier domain. To
take into account the survey mask an elaborate procedure in-
volving Monte Carlo (MC) realisations exists in the literature
[46, 49]. One of the advantages of working in the real space,
however, is that this can be circumvented. For the patches
we have considered a non-local mask with band-limited mul-
tipoles w`m = Y ∗

`m(θ0); for `wmin ≤ ` ≤ `wmax. Unlike local
patches, which are typically used, our mask is non-zero for
the entire sky. We have chosen `min = 0 and `max = 10 for
our study. The centres of our patches θ0 are chosen to be the
centres of the pixels at a HEALPix resolution of Nside = 4.
Hence, for a given map we have a collection of 192 patches.
We have chosen this to demonstrate the power of our method
which can not be analysed with Limber-type approximation.

The following expression relates the integrated bispectrum
B` with the bispectrum B`1`2`3 introduced before [46, 49]:

B` =
1

Np

1

4πg2
sky

1

2`+ 1

×
∑
`1`2`3

B`1`2`3
h`1`2`3

∑
m1m2m3

(
`1 `2 `3
m1 m2 m3

)
×

∑
m4m5m

(−1)m
(

` `1 `4
−m m1 m4

)(
` `2 `5
m m2 m5

)
×
∑

p

(wp
`3m3

)∗wp
`4m4

wp
`5m5

. (3.2)

Here, gsky represents the fraction of sky coverage by individ-
ual patches. In contrast, the sky coverage of the entire survey
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3´ 10´ 30´ 100´ S/N
σε = 0.3 5.12 3.61 2.10 0.73 11.578
σε = 1.0 3.27 1.73 0.79 0.43 6.241

TABLE I. The ζ/σ(ζ) is presented for various separation annles. The
top row corresponds to σε = 0.3 and the botton row corresponds to
σε = 1.0. The resulting total S/N is also presented.

is denoted by fsky. The coefficients w`m denotes the har-
monic multipoles of a given patch and Np is the number of
patches considered. The above expression can be simplified
for the type of patch we are using:

B` =
1

4πg2
sky

1

2`+ 1

×
`+`max

w∑
`1`2=`−`max

w

`max
w∑

`3,`4,`5=`min
w

B`1`2`3F
``1`2
`3`4`5

. (3.3)

The following notation will be useful in simplifying expres-
sions:

F``1`2`3`4`5
= (−1)`2+`4(2`4 + 1)(2`5 + 1)

×
(
`1 `2 `3
0 0 0

)(
` `1 `4
0 0 0

)
×
(
` `2 `5
0 0 0

)(
`3 `4 `5
0 0 0

){
`1 `2 `3
`5 `4 `

}
.

The matrix in curly bracket denotes a 6j symbol. The analyt-
ical expression for the covariance of IB, denoted as C``′ , can
be expressed in terms of the bispectrum covariance as follows:

C``′ = (δB`δB`′) =
1

(4π)6(gsky)4

∑
`1,2,3,4,5

∑
`′1,2,3,4,5

〈δB`1`2`3δB`′1`′2`′3〉F
``1`2
`3`4`5

F`
′`′1`

′
2

`′3`
′
4`

′
5
. (3.4)

For a noise-dominated case the bispectrum covariance can be
approximated by the following Gaussian expression.

(δB`1`2`3δB`′1`′2`′3) = h2
`1`2`3

C`1C`2C`3
× (δ`1`′1δ`2`′2δ`3`′3 + cyc.per.). (3.5)

The C` in this case takes contributions from both signal and
noise:

C`` '
1

(4π)6g4
sky

`+`wmax∑
`1,2=`−`max

`w∑
`3,4,5=`min

`w∑
`′4,5=`min

×h2
`1`2`3

C`1C`2C`3F
``1`2
`3`4`5

(F``1`2`3`
′
4`

′
5

+ F``2`1`3`
′
4`

′
5
) . (3.6)

We have focussed on a nonlocal patch of a sky. This requires
the all-sky formalism presented above.

IV. POSITION-DEPENDENT CORRELATION FUNCTION

The implementation of the position-dependent power spec-
trum, or equivalently the Integrated Bispectrum, was pre-
sented recently in an accompanying paper [49]. However, for
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FIG. 6. Same as Fig-1 but with an Euclid like mask and noise
included. We use a pseudo Euclid mask which removes both the
galactic and elliptic planes. The resulting fraction of sky coverage is
fsky = 0.35 (see [29] for more details). We also assumea Gaussian
noise, with a noise power spectrum amplitude given by n` = σ2

ε/N̄.
We have taken N̄ = 30 arcmin−2 as expected for Euclid. We have
also taken σ = 0.3. The sources are placed at a redshift zs = 1.
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FIG. 7. Same as Fig. -6 but for σε = 1.0.

smaller sky coverage, the real space analogue of the position-
dependent power spectrum, namely the position-dependent
correlation function, defined in real space can be equally use-
ful. Our aim in this paper is to express the squeezed limit of
the three-point correlation function or 3PCF, in terms of the
position-dependent correlation function (see [12] for equiv-
alent derivation in 3D for galaxy clustering statistics). We
will show how this can be related to the response function ap-
proach. We will also relate these results in the position space
with the ones found in harmonic domain. We will show how
the squeezed 3PCF and the squeezed bispectrum are related

3´ 10´ 30’ 100´ S/N
0.944 0.432 0.251 0.145 1.772

TABLE II. Same as Table-I, but for zs = 1100.
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in 2D. To this aim, we will start by defining the global cor-
relation function ξ(θ12). Though the results are primarily de-
rived keeping the projected weak-lensing convergence maps
in mind they are of generic nature and will be valid for any
projected field. The global correlation function ξ(θ12) in a 2D
projected sky covering area As for convergence κ is defined
through the following expression:

ξ(θ12) ≡ 〈κ(θ)κ(θ + θ12)〉;

=
1

As

∫
dϕ12

2π

∫
d2θ 〈κ(θ)κ(θ + θ12)〉. (4.1a)

Here, ϕ12 denotes the polar angle associated with the vector
θ12. The assumption of isotropy and homogeneity allows us
to write ξ(θ12) as a function of separation θ12 and not its ori-
entation. Notice for the global correlation the points θ and
θ + θ12 are both assumed to be within the survey patch. The
local estimate is estimated within a patch of the sky of area
Ap:

ξ̂(θ12) =
1

Ap

∫
dϕ12

2π

∫
d2 θ κ(θ + θ12)κ(θ). (4.2)

Using a 2D window function W the local correlation function
ξ̂(θ12) can be expressed as:

ξ̂(θ12) =
1

As

∫
dϕ12

2π

∫
d2θ 〈κ(θ + θ12)κ(θ)〉

×W (θ + θ12)W (θ). (4.3)

Indeed, it can be easily shown from Eq.(4.2) that ξ̂(θ12) is
not an unbiased estimator of the global ξ(θ12). We intro-
duce the multiplicative bias factor s(θ12) to relate the two, i.e.
〈ξ̂(θ12)〉 = s(θ12)ξ(θ12) which depends on the survey geom-
etry. The multiplicative factor s(θ12), which originates from
the finite-volume correction, is as follows:

〈ξ̂(θ12)〉 = s(θ12)ξ(θ12);

s(θ12) ≡ 1

As

∫
dϕ12

2π

∫
d2θ W (θ + θ12)W (θ).(4.4)

By cross-correlating the local estimates of 2PCF ξ̂ and the
mean κ̄ from the same patch we arrive at the following esti-
mate for the sq3PCF denoted as ζ(θ12):

ζ(θ12) ≡ 〈ξ̂(θ12)κ̄〉

=
1

A2
s

∫
dϕ12

2π

∫
d2θ1

∫
d2θ2 ζ(θ1 + θ12,θ1,θ2)

×W (θ1 + θ12)W (θ1)W (θ2). (4.5)

An unbiased estimator independent of survey geometry can be
constructed using the following expression:

ζ̂(θ) =
1

s(θ)
ζ(θ). (4.6)

In the response function approach we expand the estimated
two-point correlation function as a function of κ̄: ξ̂(θ) =
ξ(θ)|κ̄=0 +dξ/dκ̄

∣∣
κ̄=0

κ̄+ · · · . On cross-correlating with κ̄, at

3´ 10´ 30´ 100´ S/N
σε = 1.0 0.14/0.12 0.08/0.01 0.05/0.07 0.04/0.06 0.24/0.26
σε = 0.3 0.09/0.08 0.00/0.01 0.01/0.03 0.02/0.03 0.013/0.14

TABLE III. The |δζ|/σ(ζ) is presented for various separation angles.
The top row corresponds to σε = 0.3 and the botton row corresponds
to σε = 1.0. The resulting total S/N is also presented. Two entries
for a given θ12 and σε correspond to δζ = ζΩ+ − ζΩ and δζ− =
ζΩ− − ζΩ. The quantites ζΩ+ and ζΩ− are computed using 10%
higher and lower values of ΩM .

3´ 10´ 30´ 100´ S/N
σε = 1.0 0.09/0.08 0.00/0.00 0.02/0.03 0.02/0.03 0.02/0.62
σε = 0.3 2.57/1.19 1.75/1.31 0.09/0.71 0.31/0.84 5.57/4.77

TABLE IV. Sama as Table-III but the entries correspond to 10%
higher and lower values of the paramter σ8.

the lowest order we get the squezeed limit of the 3PCF intro-
duced above: ζ(θ) ≡ 〈κ̄ξ̂(θ)〉 = dξ/dκ̄

∣∣
κ̄=0
〈κ̄2〉. The inte-

grated bispectrum and the integrated 3PCF are related through
the following expression:

ζ(θ12) =
1

4π

∑
`

(2`+ 1)P`(cos θ12)B`. (4.7)

Here P` is the Legendre polynomial of order `. The new ob-
servable introduced above is easy to interpret and can be esti-
mated using tools developed for estimation of two-point statis-
tics ξ, thus side-stepping the complexeity involved in estima-
tion of three-point statistics. Evaluation of two-point correla-
tion function from cosmological data sets has a rich history
and many different estimators exist which can be exploited to
compute the sq3PCF.

V. COMPARISON AGAINST SIMULATIONS

The computation of the sq3PCF ζ relies on estimation of
the 2PCF ξ. Thus its implementation is rather simple and
computationally inexpensive. The computation of ζ is done
by dividing the maps into many different patches. We have
focussed on non-local patches that are non-zero on the entire
celestial sphere and can only be analysed using an all-sky ap-
proach as this approach is based on spherical harmonics. The
two-point correlation function for the convergence maps κ is
sensitive to small scale modes, when correlated with the aver-
age κ̄ estimated from the same patch can give an estimate of
the 3PCF in the squeezed limit, i.e. ζ. The resulting estimator
corresponds to the estimator described in Eq.(4.5). The choice
of patches can have a high impact on the signal-to-noise of the
estimated sq3PCF. In addition to patches that we considered
here, other filtering functions or non-local patches can be con-
sidered.

Unlike the position-dependent power spectrum, where spu-
rious bispectral modes are induced by the mask, requiring an
elaborate Monte-Carlo-based subtraction procedure [46, 49],
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the position-dependent two-point correlation function is free
from such complications. We have used two different tech-
niques in our estimation of ζ. First we have used the position-
dependent power spectra from [49] and used it to recon-
struct the ζ. We have also used a publicly available software
TreeCorr10[54] to directly estimate the two-point correlation
function to check the results though the results from TreeCorr
are not shown.

The state-of-the art simulations that we use are presented
in [53]. 11 We use the convergence maps at HEALPix12[55]
resolution Nside = 4096 and downgrade their resolution to
Nside = 2048 and use `max = 2000 for all the analyses pre-
sented here.

Traditionally patches that are localised in real space are
considered by dividing the map in smaller patches. In this
approach a Limber approximation can be used to simplify the
analytical results. In this study, we have considered patches
that are localised in the harmonic domain. The estimates from
individual maps are the averages of all patches constructed
from that map. We have used a total 40 maps and from each
of these maps we constructed 192 patches (see §III for more
details on construction of these non-local patches).

Our theoretical and numerical results are presented in Fig.
1, Fig. 2, Fig. 3 and Fig. 4 respectively for redshifts zs =
0.5, 1.0, 1.5 and 2.0. The thick solid lines in each of these
panels correspond to the ensemble average of all maps and
the thin solid lines for individual maps. The results for an
individual map represent the average of all the patches con-
structed from that map. The theoretical expectation are shown
as dashed lines.

We have also considered realisations of κ maps inferred
from CMB observations. Our results for all redshifts include
the post-Born corrections [52]. The post-Born corrections to
the 3PCF are included in our modelling of ζ(θ), although such
corrections do not contribute significantly at lower redshifts
[29, 56]. The lensing signal for zs = 1100 is rather weak, but
we get reasonable results for small angular scales. For large
angular scales the recovered ζ shows large fluctuations. The
results are presented in Fig. 5.

In addition to the noise-free all-sky simulations we have
also considered maps at source redshift zs = 1.0 and ap-
plied the pseudo-Euclid mask (see [29, 56] for a detailed de-
scription). This mask removes both the galactic and elliptic
planes thus leaving roughly fsky = 0.35 for science exploita-
tion. We also add two different levels of Gaussian noise. The
noise power spectrum denoted as n` for the noise is given by
n` = σ2

ε /N̄ . For Euclid we have taken n̄ = 30 arcmin−2. We
have considered two values for σε. The results for σε = 0.3
are shown in (Fig. 6) and for σε = 1.0. in (Fig. 7). As ex-
pected the results of comparison of theoretical and numerical
results are in agreement with noise free case. The addition of
noise only increases the scatter.

10 https://github.com/rmjarvis/TreeCorr
11 http://cosmo.phys.hirosaki-u. ac.jp/takahasi/allsky raytracing/nres12.html.
12 http://healpix.sourceforge.net

VI. CONCLUSION

Using an estimator designed to probe sq3PCF and state-of-
the-art simulations we found that the analytical results can be
very accurately recovered from numerical simulation. Our es-
timator probes the squeezed configuration of the bispectrum.

In previous studies, using a different but related estimator,
known also as the binned estimator, it was found [49] that,
for other shapes, including e.g. the equilateral shape, the fit-
ting function we have used, provides rather accurate descrip-
tion of the numerical estimates from simulations. However,
for squeezed configurations this was not the case. We have
presented the corresponding results of analysis in the config-
uration space in this paper.

For cosmological parameter inference using the position-
dependent correlation function or IB, if we make the further
assumption that the likelihood has gaussian form, we still re-
quire an accurate covariance matrix, and this is a far from triv-
ial issue. Most formalism borrowed from CMB studies use a
Gaussian Likelihood or its variants. We notice that recently it
was shown that a Gaussian approximation is sufficient for the
power spectrum [58] and one-point third-order moment [59]
for the aperture mass 〈M3

ap〉. However, similar study for two-
point third-order statistics, i.e., ζ(θ12) or equivalently B` in
the harmonic domain, is currently lacking in the literature.

While the diagonal entries in the covariance matrix can be
modelled numerically using relatively few simulations, accu-
rate numerical estimates for the off-diagonal elements require
many more realisations than we have currently available.

We have computed the scatter in ζ represented as ζ and
tabulated ζ/σ(ζ) in Table-I and Table -II as a function of the
separation angle θ12. Two values of σε = 0.3 and 1.0 are
considered which correspond to the (S/N) of 11.6 and 6.24 re-
spectively. A Euclid-type mask with fsky=0.3 was considered
and sourced were placed at zs = 1.0. For zs = 1100 we get
(S/N) = 1.8.

We have also studied the sensitivity of ζ to cosmological
parameters. We have computed |δζ|/σ(ζ). This is done by
constructing |δζ| = ζΩ+ − ζΩ and |δζ| = ζΩ− − ζΩ as a
function of θ12 and σε. Here, ζΩ+ and ζΩ− corrrespond re-
spectively to 10% higher and lower value of ΩM . The results
are presented in Table-III for ΩM . Corresponding results for
σ8 are shown in Table-IV The top row corresponds to intrinsic
ellipticity distribution parameter σε = 1.0 whereas the bottom
row corresponds to σε = 0.3. The total (S/N), for 10% devi-
ation in can be as high as 5.5 for σ8.

At the time of writing this paper, we found a similar study
[57] in which the authors consider the squeezed 3PCF for
shear using compensated filter and compare the results from
simulation against analytic prediction using an older fitting
function for the matter bisepctrum.
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