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ABSTRACT

The standard wide-field imaging technique, the w-projection, allows correction for wide-fields of

view for non-coplanar radio interferometric arrays. However, calculating exact corrections for each

measurement has not been possible due to the amount of computation required at high resolution

and with the large number of visibilities from current interferometers. The required accuracy and

computational cost of these corrections is one of the largest unsolved challenges facing next generation

radio interferometers such as the Square Kilometre Array. We show that the same calculation can

be performed with a radially symmetric w-projection kernel, where we use one dimensional adaptive

quadrature to calculate the resulting Hankel transform, decreasing the computation required for kernel

generation by several orders of magnitude, whilst preserving the accuracy. We confirm that the radial

w-projection kernel is accurate to approximately 1% by imaging the zero-spacing with an added w-

term. We demonstrate the potential of our radially symmetric w-projection kernel via sparse image

reconstruction, using the software package PURIFY. We develop a distributed w-stacking and w-

projection hybrid algorithm. We apply this algorithm to individually correct for non-coplanar effects

in 17.5 million visibilities over a 25 by 25 degree field of view MWA observation for image reconstruction.

Such a level of accuracy and scalability is not possible with standard w-projection kernel generation

methods. This demonstrates that we can scale to a large number of measurements with large image

sizes whilst still maintaining both speed and accuracy.
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1. INTRODUCTION

Since the advent of radio interferometry in the 1940s

(Pawsey et al. 1946; Ryle & Vonberg 1948) radio as-

tronomers have built an impressive suite of interferomet-

ric imaging techniques to allow signals from collections

of antennas to be used collectively to image astronomical

sources. As successive generations of interferometric ar-

rays were built and operated, techniques were developed

to obtain an estimate of the true sky brightness distri-
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bution, and to correct for different instrumental affects

inherent in the process. Among these methods are pro-

cesses such as deconvolution of the antenna response, so-

called ‘CLEANing’ (Högbom 1974; Schwarz 1978; Steer

et al. 1984; Pratley & Johnston-Hollitt 2016), and meth-

ods to account for wide-field and other direction depen-

dent effects (DDEs) such as w-projection (Cornwell et al.

2008) and a-projection (Bhatnagar et al. 2008).

In the past where the field of view of instruments

was relatively small, it was common practice to assume

curvature was negligible and proceed with a two di-

mensional Fourier transform over the uv-plane (using

cartesian coordinates). With the arrival of next gen-

eration telescopes, such as the LOw Frequency ARray
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(LOFAR; van Haarlem et al. 2013), Murchison Wide-

field Array (MWA; Tingay et al. 2013), and Hydro-

gen Epoch of Reionization Array (HERA; DeBoer et al.

2017), telescopes became non-coplanar arrays with ex-

tremely large fields of view. Such instruments are pre-

cursors to the low frequency component of the Square

Kilometre Array (SKA-LOW), and are already encoun-

tering ‘big data’ challenges. Imaging and correcting for

DDEs (with wide-field of view DDEs being the most ba-

sic) are among the most computationally intensive and

critical challenges that needs to be solved if the SKA is

to meet its scientific goals, in areas such as the Epoch of

Reionization (EoR) (Koopmans et al. 2015) and Cosmic

Magnetism (Johnston-Hollitt et al. 2015). Until now,

the approach to account for the third Fourier dimen-

sion, w, has been to use mathematical approximations

to correct for this term and the associated wide-field

effects in the measurement equation, reducing the prob-

lem back to a two dimensional Fourier transform via the

so-called ‘w-projection algorithm’ (Cornwell et al. 2008;

Tasse et al. 2013; Offringa et al. 2014).

However, the w-projection algorithm kernels, used to

correct for non-coplanar array and sky curvature, to date

have been computationally expensive to calculate, with

kernel generation dominated by the Fast Fourier Trans-

form (FFT) (Scaife 2015). In particular the gridding

kernel (anti-aliasing kernel) and w-chirp are multiplied

in image space, and then an FFT is applied to gener-

ate the w-projection kernel (Cornwell et al. 2011). This

means it has not been possible to generate a kernel for

each w-term individually, instead they are generated as

w-planes, approximately correcting for a group of w-

terms.

For extremely wide-fields of view, this becomes ex-

pensive in computation and memory, and requires both

high resolution sampling to model the spherical curva-

ture and extra zero padding to increase sub-pixel accu-

racy in the uv-domain. Such a cost in kernel construc-

tion has motivated alternative imaging strategies, such

as image domain gridding (van der Tol et al. 2018). Even

for small fields of view with high resolution, it is not

possible to perform an FFT for each visibility on large

data sets, limiting the kernel calculation to a small num-

ber of w-planes. However, Merry (2016) mathematically

showed that for narrow fields of view the w-projection

kernel can be approximated as separable into a prod-

uct of two 1d kernels, reducing the resources required to

generate w-planes.

In this work, we set out to improve the analytic under-

standing of wide-field interferometry, in the hopes that

it would provide clues on how to improve the strategy of

expensive kernel construction. We start by presenting

the non-standard analytic expression for the 3d Fourier

transform used to create the w-projection kernel. Then

using the analytic expression for the Fourier transform of

a spherical shell and enforcing the horizon window with

a convolution kernel, we arrive at the 3d expression for

the sky curvature and horizon in the uvw-domain. The

real component of the kernel is a radial Sinc function in

uvw. It is also clear that the horizon window produces

the imaginary component, which is a Hilbert transform

of the real component. With this understanding, we

investigate construction through 3d convolution in the

uvw-domain to generate gridding kernels. However, this

proves computationally challenging due to rapid oscula-

tions and large function support1.

We find it is less challenging to generate the w-

projection kernel via a Fourier integral using 2d adap-

tive quadrature, due to the smoothness of the window

function and the chirp. However, under the condition

that the window function has radial symmetry, this

2d Fourier integral is equivalent to 1d Hankel trans-

form. We show that such a 1d Hankel transform can

be fast and accurately computed with adaptive quadra-

ture compared to the 2d Fourier integral, and produces

the same imaging results.

We discuss the computational impact of having a 1d

radially symmetric w-projection kernel, such as reducing

the dimension of w-planes from 2d to 1d radial planes,

allowing new possibilities for reducing kernel construc-

tion costs.

Lastly, we provide a demonstration of exact correc-

tion of the w-component to simulated big data sparse

image reconstruction using the software package PU-

RIFY (Carrillo et al. 2014; Pratley et al. 2018), using the

hybrid of w-stacking and w-projection with distributed

computation on a high performance computing cluster.

Correction of the w-component for each measurement

is only possible with the developments in this work, a

radially symmetric w-projection kernel and distributed

computation with w-stacking.

The developments presented here provide an accurate

route for reducing the computational overhead for next

generation wide-field imaging, thus providing a step for-

ward on the path to realizing the SKA.

This work starts with an introduction to the interfer-

ometric measurement equation and the w-projection al-

gorithm in Section 2, Section 3 extends the w-projection

derivation starting from a 3d setting. The calculation

of a 1d radially symmetric w-projection kernel is de-

rived in Section 4. The 1d radially symmetric kernel is

1 By the support of a function we mean the region of the domain
where the function has non-zero output.
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then numerically validated and benchmarked in Section

5. Section 6 details and demonstrates the computation-

ally distributed w-stacking and w-projection hybrid al-

gorithm that is possible with a 1d w-projection kernel.

This work is concluded in Section 7.

2. INTERFEROMETRIC MEASUREMENT

EQUATION

The interferometric measurement equation for a radio

telescope can be represented by the following integral

y(u, v, w′) =

∫
x(l,m)a(l,m)

e−2πiw′(
√

1−l2−m2−1)

√
1− l2 −m2

e−2πi(lu+mv) dldm,

(1)

(u, v, w′) are the baseline coordinates and (l,m, n) are

directional cosines restricted to the unit sphere. In

this work, we define w′ = w + w̄, where w̄ is the

average value of w-terms, and w is the effective w-

component (with zero mean). x is the sky brightness,

n(l) =
√

1− l2 −m2 is a parametrization of the upper

hemisphere, and a includes direction dependent effects

such as the primary beam and Field of View (FoV).

The measurement equation is a mathematical model of

the measurement operation that allows one to calculate

model measurements y when provided with a sky model

x. Having such a measurement equation allows one to

find a best fit model of the sky brightness, for a given

set of (incomplete) measurements. Many techniques are

available for inverting a measurement equation in an at-

tempt to find a best fit model. This includes traditional

methods such as CLEAN (Högbom 1974) and Maxi-

mum Entropy (Ables 1974; Cornwell & Evans 1985), and

state of the art deconvolution methods such as Sparse

Regularization algorithms (Onose et al. 2016; Pratley
et al. 2018; Dabbech et al. 2018). There are many other

variations of the measurement equation, that can in-

clude general direction dependent effects and polariza-

tion (McEwen & Scaife 2008; Smirnov 2011; Price &

Smirnov 2015). But, all interferometric measurement

equations can be derived from the van Cittert-Zernike

theorem (Zernike 1938).

This measurement equation is typically approximated

by a non-uniform fast Fourier transform, since it re-

duces the computational complexity from O(MN) to

O(MJ2 + N logN), where N is the number of pixels

M is the number of visibilities, and J is the number

of weights to interpolate off the fast Fourier transform

(FFT) grid for each axis (Fessler & Sutton 2003; Thomp-

son et al. 2008). This process is traditionally known as

degridding. The version of the measurement equation

relevant in this work is represented by the following lin-

ear operations

y = WGCFZSx (2)

S represents a gridding correction and correction of base-

line independent effects such as w̄, Z represents zero

padding of the image, F is an FFT, G represents a sparse

circular convolution matrix that interpolates measure-

ments off the grid and the combined GC includes base-

line dependent effects such as variations in the primary

beam and w-component in the interpolation, and W
are weights applied to the measurements. This linear

operator represents the application of the measurement

equation, so is typically called a measurement operator

Φ = WGCFZS with Φ ∈ CM×N .

In this case, xi = x(li) and yi = y(ui) are discrete

vectors in CN×1 and CM×1 of the sky brightness and

visibilities, respectively.

Since the measurement operator is linear it has an ad-

joint operator Φ†, which essentially, consists of applying

these operators in reverse. Additionally, it is possible to

represent these operators in matrix form, however, this

is not always efficient or practical.

The dirty map can be calculated by Φ†y, and the

residuals by Φ†Φx−Φ†y.

2.1. Gridding and degridding

Degridding, also known as the NUFFT, is the process

of applying the linear operators GFZS. There are many

works in the literature describing this process (see Sec-

tion 4 of Pratley et al. 2018 for a brief review). The

zero padding, Z, (normally by a factor of 2) is to in-

crease accuracy of degridding/gridding of visibilities, by

up sampling in the Fourier domain. The choice of inter-

polation weights in G, known as the gridding kernel, af-

fects the aliasing error, where ghost periodic structures

can appear in the dirty map from outside the imaged

region. An ideal gridding kernel would be a sinc inter-

polation kernel, which would prevent any ghosting from

the imaged region with a box function, but this has a

large support (highly non localized). Well known ker-

nels, such as prolate spheroidal wave functions (PSWF)

and Kaiser Bessel functions, are known to suppress the

ghosting through apodisation while having minimal sup-

port on the Fourier grid (Fessler & Sutton 2003; Offringa

et al. 2014; Pratley et al. 2018). This apoidisation is then

corrected for with the gridding correction S.

Importantly, the size of the cell in a grid is inversely

proportional to the field of view, and the number of cells

in a grid determines the resolution of the image.

2.2. The projection algorithm
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The projection algorithm has been developed to model

baseline dependent effects. Typically, DDEs in the mea-

surement equation such as the primary beam and w-

term are multiplied with the sky intensity in the image

domain. Since they are baseline dependent, a separate

primary beam and w-term would need to be multiplied

for each baseline – which is computationally inefficient

as this involves applying a different gridding/degridding

process for each baseline.

If we define our baseline dependent DDEs as

c(l,m;w) = a(l,m)
e−2πiw(

√
1−l2−m2−1)

√
1− l2 −m2

, (3)

the measurement equation can be expressed as

y(u, v, w̄ + w) =

∫
x(l,m)e−2πiw̄(

√
1−l2−m2−1)

×c(l,m;w)e−2πi(lu+mv) dldm.

(4)

We can use the convolution theorem, which states that

for functions f and g we have F−1{F{f}F{g}} = f ? g,

where convolution in 3d is defined as

(f ? g)(x, y, z) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(t, r, q)

×g(x− t, y − r, z − q) dtdrdq .

(5)

This produces the expression

y(u, v, w) = ỹ(u, v, 0) ? C(u, v, w) , (6)

where ỹ(u, v, 0) is the Fourier transform of the sky

brightness

ỹ(u, v, 0) =

∫
x(l,m)e−2πiw̄(

√
1−l2−m2−1)

×e−2πi(lu+mv) dldm.

(7)

where the projection kernel C is the Fourier representa-

tion of c, and ? is the convolution operation.

2.3. Projection with convolutional degridding

Since the convolution with gridding kernels is already

baseline dependent, we can include the projection con-

volution in the gridding process. If we let G(u, v) be a

gridding kernel, and the Fourier transform of the win-

dow function g(l,m), we find

y(u, v, w) =

∫ [
x(l,m)

g(l,m)

]
e−2πiw̄(

√
1−l2−m2−1)×

g(l,m)c(l,m;w)e−2πi(lu+mv) dldm,

(8)

this suggests that we should define a new convolutional

kernel

[GC] (u, v, w) = G(u, v) ? C(u, v, w) (9)

y(u, v, w) = ỹ(u, v, 0) ? [GC] (u, v, w) , (10)

where ỹ(u, v, 0) is now the Fourier transform of the grid-

ding corrected sky brightness

ỹ(u, v, 0) =

∫
x(l,m)e−2πiw̄(

√
1−l2−m2−1)

g(l,m)

×e−2πi(lu+mv) dldm.

(11)

Traditionally, the kernel is window separable in l and m,

i.e. g(l,m) = g(l)g(m). But, as relevant for the later

sections of this work, it can be a radial function, i.e. a

function of
√
l2 +m2 only.

This shows that we can include the projection convo-

lution in the gridding process through the kernel GC in

Equation 10 and the operator GC seen in Equation 2.

In the next section, we derive expressions for the chirp

kernel C in uvw-space from a 3d setting.

3. PROJECTION ALGORITHM IN 3D SETTING

In this section, we derive the 3d w-projection kernel

CH formula including the horizon. We start using a mea-

surement equation which can be expressed to include

the horizon explicitly and any restrictions of our signal

to the sphere. We restrict the signal above horizon in

3d through the Heaviside step function

Θ(n) =


1 n > 0

1
2 n = 0

0 n < 0

(12)

and to the sphere through the Dirac delta function,

yielding δ(1− l2 −m2 − n2),

cH(l,m, n;w′) = Θ (n) δ(1− l2−m2−n2)e+2πiw′
. (13)

This leads to the measurement equation

y(u, v, w′) =

∫ ∞,∞,∞
−∞,−∞,−∞

x(l,m)a(l,m)cH(l,m, n;w′)

e−2πi(lu+mv+nw′)dldmdn .

(14)

where equivalent 3d equations can be found in Thomp-

son (1999); Cornwell et al. (2008); Thompson et al.

(2008). Unlike the previous section, the above equation

has no 1/n term. This term is provided by the Dirac

composition rule, which is shown in the next subsection.
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3.1. w-projection including the horizon directly

In section, we show that the kernel in the work of

Cornwell et al. (2008) is equivalent to including both the

horizon and spherical effects in the projection algorithm

in a full 3d setting. The Fourier transform of Equation

13 is

CH(u, v, w) =

∫ ∞,∞,∞
0,−∞,−∞

δ(1− l2 −m2 − n2)

e−2πi(lu+mv+nw)e+2πiwdldmdn .

(15)

We find that the Dirac delta function is zero at two val-

ues of n = n±, where n± = ±
√

1− l2 −m2 are the two

roots. In addition, we have δ(n2 − n2
+) = (δ(n− n+)−

δ(n − n−))/(2n+), however, the horizon eliminates the

n = n− root from the integral. Using the composition

rule for the Dirac delta function we have

CH(u, v, w) =

∫ 1,1,1

0,−1,−1

δ(n− n+)

2

e−2πiw
√

1−l2−m2

√
1− l2 −m2

e−2πi(ul+mv)e+2πiwdldmdn ,

(16)

where the bounds of integration are now restricted to

the sphere. and doing an integral over n we find

CH(u, v, w) =

∫ 1,1

−1,−1

e−2πiw(
√

1−l2−m2−1)

2
√

1− l2 −m2

×e−2πi(ul+mv)dldm.

(17)

This is the standard expression used for the w-projection

kernel in Cornwell et al. (2008), with the inclusion of a

factor of 1/2 from there being two roots and normaliza-

tion of the Dirac Delta function. To date, there is no

analytical solution for this integral beyond approxima-

tions. One reason this integral may be difficult to solve

analytically, is the breaking of spherical symmetry when

including the horizon.

Having no analytic solution to this integral poses a

problem in understanding the properties of CH(u, v, w).

This has lead to various approximations of CH(u, v, w),

where the solution can be used estimate its support and

amplitude.

We can expand w(
√

1− l2 −m2 − 1) in a Tay-

lor expansion to a given order. We can expand in

(
√

1− l2 −m2 − 1) to first order, we find

w(
√

1− l2 −m2−1) = −w(l2 +m2)

2
+O(w(l2 +m2)2) .

(18)

This has the assumption w(l2+m2)2 � 1. Also choosing

a small field of view (l2 +m2)2 � 1 leads to

e−2πiw(
√

1−l2−m2−1)

2
√

1− l2 −m2
→ eπiw(l2+m2)

2
. (19)

In Cornwell et al. (2008), they state the above small field

of view approximation, which is a Gaussian. The Fourier

transform of a Gaussian function is also Gaussian, and

leads to

CH(u, v, w) ∝ eiπ
(u2+v2)

w

iw
, (20)

however, they comment that this expression breaks

down at large fields of view and diverges at w = 0.

By choosing to fix the sky to a parabola, rather than

the sphere, we arrive at the same approximation above.

First we choose

cH(l,m, n;w′) =
1

2
δ

(
n+

l2 +m2

2

)
, (21)

then by integrating over n in Equation 14 we arrive at

same small field of view approximation.

3.2. w-projection with exact spherical correction

We choose to replace the horizon with a window func-

tion, where the expression for the full sphere is

cH(l,m, n;w′) = h(n)δ(1− l2 −m2 − n2) . (22)

Any scaling from this window function can be corrected

in the upper hemisphere of the measurement equation

y(u, v, w′) =

∫ ∞,∞,∞
−∞,−∞,−∞

x(l,m)a(l,m)

h(
√

1− l2 −m2)
cH(l,m, n;w′)

e−2πi(ul+mv+nw′)e+2iπw′
dldmdn .

(23)

3.2.1. No horizon

When h(n) = 1 there is no horizon and the w-

projection kernel is calculated from

C(u, v, w) =

∫ ∞,∞,∞
−∞,−∞,−∞

δ(1− l2 −m2 − n2)

e−2πi(ul+mv+nw)e+2πiwdldmdn .

(24)

The Fourier transform of this equation has an analytic

solution that can be simply expressed as a real valued

function

C(u, v, w) = 2πsinc(2π
√
u2 + v2 + w2)e+2πiw , (25)

as shown in Vembu (1961), which is solved in spherical

coordinates due to symmetry. This solution dates back

as far as Poisson (1820), and similar problems have been

solved in 2 dimensions in Parseval (1805). The units

of (u, v, w) are implicitly chosen to depend on the di-

rectional cosines (l,m, n), meaning
√
u2 + v2 + w2 = 1

corresponds to the largest spatial scales.

The Sinc function above represents limits on the reso-

lution in (u, v, w) due to the field of view being bounded
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to the sphere. The uncertainty principle states that re-

stricting the field of view is equivalent to enforcing a

resolution limit on C(u, v, w). At a small field of view,

this kernel is effectively a delta function of small sup-

port. However, as the field of view increases, the kernel

becomes a radial Sinc function with extended support

and rapid oscillations. When mosaicking multiple fields

of view, resolution in (u, v, w) is increased (as discussed

in Ekers & Rots (1979) and Thompson (1999)), however,

the total field of view will be limited to the sphere as

represented by this radial Sinc function.

Since x(l,m) is independent of n it will project both

onto the sphere for n and −n. While C(u, v, w) mod-

els the curvature of the sphere, it allows a reflection of

x(l,m) for −1 ≤ n < 0. This is why a horizon window

function needs to be included in the analysis.

3.2.2. Projecting above the Horizon

If we let H(w) be the Fourier transform of h(n), we

find that the horizon effect can be understood through

the convolution theorem

CH(u, v, w) = H(w) ? C(u, v, w) . (26)

We can get an expression for the horizon limited w-

projection kernel in the (u, v, w) domain in terms of

the w-projection kernel for the full sphere. Choosing

h(n) = Θ(n) with H(w) = 1
2

[
δ(w)− i

πw

]
, we find an

expression equivalent to Equation 17 in the (u, v, w) do-

main

CH(u, v, w) =
1

2
C(u, v, w)− i

2π

∫ ∞
−∞

C(u, v, t)

w − t
dt , (27)

where the second term is a Hilbert transform of the

sphere along the w-axis. Another equivalent expression

can be found by choosing a box function h(n) = Π(n+ 1
2 )

for the horizon window, by setting H(w) = eiπw sin(πw)
πw ,

CH(u, v, w) =

∫ ∞
−∞

dt eiπtsinc(πt)C(u, v, w − t) . (28)

We are not aware of an analytic solution to this convolu-

tion, which could improve understanding of the behavior

of wide field effects.

3.3. Convolution with a gridding kernel

To calculate the w-projection kernel, we could con-

volve the chirp with the gridding kernel in the (u, v, w)

domain

[GC](u, v, w) =

∫ ∞,∞,∞
−∞,−∞,−∞

G(p)G(q)H(r)

C(u− p, v − q, w − r)dpdqdr .
(29)
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Figure 1. The oscillations of C, without the complex phase,
as a function of u for given w. Equation 30, which is used
to calculate the pixel size of a uv-grid, shows that many
of these oscillations can occur over the convolution window,
making numerical integration difficult for convolution with
the gridding kernels G and the horizon H. Hence, we find
that convolution by numerical integration is difficult. Ad-
ditionally, we see that C has a large support that increases
with w. The top figure shows the standard Sinc function at
w = 0, and the bottom figure shows the spread of C over a
wider range of u as w increases.

However, the challenge with computing this three di-

mensional integral is the extended support of H and C

in w. Additionally, C(u, v, w) will have rapid oscillation

in (u, v) for small values of w, making accurate numeri-

cal integration and convolution expensive, see Figure 1.

Therefore, we avoid this approach in kernel calculation,

and present an alternative approach in the next section.

4. KERNEL CALCULATION METHODS

In the previous section, we discussed the properties

of the w-projection kernel in the (l,m, n) and (u, v, w)

domains. We expected that the properties for numeri-

cal convolution with the chirp and the gridding kernel

are more favorable by multiplying the window and the
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chirp in the image domain, then performing a Fourier

transform to generate the kernel in the Fourier domain.

This should increase accuracy and reduce the total com-

putation.

In this section, we describe two methods for calculat-

ing the w-projection kernel using the Fourier transform.

The first is numerical integration using adaptive quadra-

ture in 2d, the second is to restrict the imaged region to

a radial field of view, allowing for a radially symmetric

kernel that can be integrated with adaptive quadrature

in 1d. In the following section we compare the numer-

ical accuracy and speed of the two kernel construction

methods. The scaling Θ(1 − l2 −m2)/
√

1− l2 −m2 is

included in the gridding and primary beam correction,

because it is baseline independent. We do not include

this term in the gridding kernel, and we apply this in

the image domain with all other baseline independent

effects.

4.1. Cartesian integration

To calculate the Fourier coefficients of the w-

projection corrected gridding kernel, we need to perform

a Fourier series with boundary conditions determined

by the size of the window. We let ∆u and ∆v determine

the conversion between pixel and baseline coordinates,

u = upix∆u and v = vpix∆v where upix and vpix are

integer pixel values. This factor is given by

∆u =

[
2α sin

(
Nxπcell

2× 60× 60× 180.

)]−1

. (30)

where cell is the size of a pixel in arc-seconds, α is the

oversampling ratio, and Nx is the image width of the x-

axis. A similar formula is given for ∆v, with respect to

the y-axis. We use this field of view to integrate over the

imaged region, and including the bounds of the sphere

[GC](upix, vpix, w,∆u,∆v) =

∫ α/(2∆u),α/(2∆v)

−α/(2∆u),−α/(2∆v)

e−2πiw(
√

1−l2−m2−1)g(∆ul)g(∆vm)

×e−2πi(∆uupixl+∆vvpixm)dldm.

(31)

We then change coordinates l = x/∆u and m = y/∆v to be relative to the imaged region

[GC](upix, vpix, w,∆u,∆v) =
1

∆u∆v

∫ α/2,α/2

−α/2,−α/2
e−2πiw(

√
1−x2/∆u2−y2/∆v2−1)g(x)g(y)

×e−2πi(upixx+vpixy)dxdy .

(32)

Here g(l) is the window function that determines the

gridding kernel and [GC] is the w-projection corrected

gridding kernel. It is worth noticing that when w = 0,

there is no dependence on ∆u or ∆v, unless the condi-
tion l2 +m2 ≤ 1 is to be enforced.

Depending on the convention of the FFT operation

F in the measurement operator, there could be a phase

offset of e±2πiupix/2 and e±2πivpix/2 required to centre the

image2. The region of integration is determined by the

zero padded field of view (we have used zero padding by

a factor of α = 2).

4.2. Polar integration

By performing a change of coordinates, this integral

can also be evaluated in polar coordinates

[GC](upix, vpix, w,∆u,∆v) =
1

∆u∆v

∫ α/2,2π

0,0

g(r cos(θ))g(r sin(θ))e−2πiw(
√

1−r2 cos2(θ)/∆u2−r2 sin2(θ)/∆v2−1)

×e−2πi(upixr cos(θ)+vpixr cos(θ))rdrdθ ,

(33)

2 This is due the difference of centering the coordinates in the
middle or at the corner of the image, which can require an FFT
shift.

The region is circular rather than rectangular, which is

a fundamental difference with the Cartesian expression

in Equation 32 (the boundary conditions for the Fourier

series lie on a circle, rather than a square).
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The enforces a Sinc convolution with the w-projection

for the rectangular boundary condition, and a Airy

Pattern convolution (first order Bessel Function) for

the circular boundary condition. This translates to a

slightly different interpolation when up-sampling the w-

projection kernel, Sinc interpolation in the rectangular

case, and J1(4π
√
u2 + v2/α)/(2

√
u2 + v2/α) interpola-

tion in the circular case, both enforcing a band-limit.

It is important to state, this boundary is at the edge of

the zero-padded region, which suggests that there would

be little difference in practice because it is far outside

of the gridding corrected region, and will not change

suppression of aliasing error (which is the purpose of the

window function/gridding convolution function). This

means that while the kernels are fundamentally different

due to the boundary condition, they will perform the

same role, and the entire measurement operators will be

equivalent after gridding correction and zero-padding.

4.3. Radial symmetry

We now make our window function radially symmet-

ric g(l)g(m)→ g(
√
l2 +m2), and choose ∆u = ∆v so

that the chirp is also radially symmetric. This allows

us to take the Fourier transform of a radially symmetric

function, which is calculated using a 1d integral rather

than the 2d polar integral in Equation 33, and is known

as a Hankel transform3. This is given by

[GC](
√
u2

pix + v2
pix, w,∆u) =

2π

∆u2

∫ α/2

0

g(r)e−2πiw(
√

1−r2/∆u2−1)J0

(
2πr

√
u2

pix + v2
pix

)
rdr , (34)

where J0 is a zeroth order Bessel function. The restric-

tion of r/∆u < 1 is built into the bounds of the inte-

gration. This has the large computational advantage of

only sampling along the radius, reducing how the com-

putation scales with field of view and w. There is also

an increase in accuracy, since there is no sampling in θ.

Furthermore, the condition that we require ∆u = ∆v is

not difficult to accommodate in many cases.

4.4. Adaptive quadrature

To compute Equation 32, we use adaptive multidimen-

sional integration. In a multi-variate setting, quadrature

is also known as cubature.

We use the software package Cubature4 which has

implementations of these algorithms. We use the h-

adaptive cubature method to evaluate the integrals in

this work, which uses the work of Genz & Malik (1980)

and Berntsen et al. (1991) to perform integration using

an adaptive mesh to approximate the integral, until con-

vergence is reached (h is in reference to a length parame-

ter of the mesh). Cubature also has a p-adaptive method

(Ernst 1989), which uses polynomial based quadrature,

increasing the polynomial order of the integrand until

the integration has converged, and is expected to con-

verge faster than h-adaptive methods for smooth inte-

grands.

3 Birkinshaw (1994) suggested that convolutions between ra-
dially symmetric functions can be efficiently computed using a
Hankel Transform but in different astronomical contexts.

4 https://github.com/stevengj/cubature

The p-adaptive would converge faster than the h-

adaptive method for the 1d-integration, while providing

results as accurate within numerical error. However,

the accuracy of the p-adaptive method was not as ac-

curate for 2d-integration, especially in the presence of

discontinuities. For this reason, we use the p-adaptive

method for 1d-integration but the h-adaptive method

for 2d-integration.

4.5. Kaiser-Bessel gridding kernel

In this work, we use a Kaiser-Bessel gridding kernel.

Kaiser-Bessel functions have been used as convolutional

gridding kernels for decades (Greisen 1979; Jackson et al.

1991; Fessler & Sutton 2003), and have a simpler form

than the prolate spheroidal wave functions, while pro-

viding similar performance (Greisen 1979). The zeroth

order Kaiser-Bessel function can be expressed as

G(upix) =

I0

(
β

√
1−

(
2upix

J

)2
)

I0(β)
, (35)

where upix has units of pixels, J is the support in units

of pixels, I0 is the zeroth order modified Bessel function

of the first kind, and β determines the spread of the

Kaiser-Bessel function (Jackson et al. 1991; Fessler &

Sutton 2003). The Fourier Transform of G(upix) is

g(x) = sinc
(√

π2x2J2 − β2
)
. (36)

To correct for the convolution, the image is divided by

g(l) (Jackson et al. 1991; Fessler & Sutton 2003)

s(x) = [g(x)]
−1

. (37)
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The work of Fessler & Sutton (2003) shows that for β =

2.34J the Kaiser-Bessel kernel performs similarly to the

optimal min-max kernel considered.

In this work, we use the Kaiser-Bessel gridding kernel

to calculate w-projection kernels, by using g(x) in Equa-

tions 32 and 34. For other possible window functions

and anti-aliasing kernels, see Thompson et al. (2008)

and Pratley et al. (2018).

5. VALIDATION OF RADIALLY SYMMETRIC

KERNEL

In this section we numerically evaluate Equation 32,

and present a cross section of the kernel, showing its

variation with sub-pixel accuracy. We then numerically

evaluate Equation 34, showing that it provides the same

accurate sub-pixel accuracy, with orders of magnitude

less function evaluations during the quadrature compu-

tation.

5.1. Quadrature convergence conditions

The kernel function is normalized to one when

(u, v, w) = (0, 0, 0), and an estimate error tolerance η

on the quadrature calculated kernel [GC]η(upix, vpix, w)

is used for quadrature convergence of the kernel, such

that the absolute difference is less than η

|[GC](upix, vpix, w)− [GC]η(upix, vpix, w)| ≤ η . (38)

It is also possible to use the relative difference

|[GC](upix, vpix, w)− [GC]η(upix, vpix, w)|
|[GC]η(upix, vpix, w)|

≤ η , (39)

which would constrain smaller values of [GC]η(upix, vpix, w)

to be calculated more accurately, at the cost of more

computation.

There is a downside of using absolute difference, for

example, if you are calculating kernels to an absolute

accuracy of 10−2 and the kernels have values below 10−2

then these values may not be accurate. The relative

difference is an ideal alternative, but it can cause an

inconsistent level of accuracy across the measurement

operator, and more computation can go into small values

that may not contribute much in practice. If the support

size is known accurately before computation, this may

help.

We assume that the support size of the w-projection

GC kernel is proportional to 2w/∆u and at least the

support size of the gridding kernel G. With the support

size known, we use the absolute different criteria with

η = 10−6.

5.2. Kernel cross-section

Figure 2 shows a cross section of the w-projection

kernel [GC](upix, 0, w), the real and imaginary compo-

nents, and the absolute value, for 0 ≤ upix ≤ 19 and

0 ≤ w ≤ 99. We find that the convolution of CH with

G(u) and G(v) creates a smooth varying w-projection

kernel in both real and imaginary components. The

imaginary component is zero at w = 0, which is con-

sistent with Equation 27. We find that the decay in the

kernel as a function of w is more extreme with wider

fields of view.

We then evoke radial symmetry in the gridding kernel

and field of view, and evaluate Equation 34 in Figure

3. We find that the features of the radially symmetric

gridding kernel from Equation 32 match the cross sec-

tion of Equation 34, suggesting little difference between

the two kernels. Additionally, when N samples are re-

quired to evaluate the 1d radially symmetric kernel, ap-

proximately N2 are required to evaluate the 2d kernel,

as shown in Figure 4. This suggests that the symmetric

kernel calculation scales with radius, not total area as

in the 2d case. This has enormous general implications

for computation and storage for w-projection kernels at

large fields of view.

5.3. Numerical equivalence of radially symmetric

kernel

Next, we show that using the radially symmet-

ric gridding kernel is consistent with the non radi-

ally symmetric kernel. To test this, we constructed

three measurement operators Φstandard (standard w-

projection kernel), Φradial (symmetric w-projection ker-

nel), and Φno−projection (no w-term), and show that

Φstandard ≈ Φradial within some error (suggesting that

they agree), and use Φno−projection as a reference oper-

ator.

To show that two operators are equivalent, we need

the notion of an operator norm ‖ · ‖op. The operator

norm for an operator that maps between Hilbert spaces

(`2) has the property that

‖Φx‖`2 ≤ ‖Φ‖op‖x‖`2 ∀x ∈ RN . (40)

‖Φ‖op is the smallest value for which this is true for

all x. This allows us to put bounds on the output of

‖Φ‖op for each input. We also have the properties that

‖Φ‖op = ‖Φ†‖op and ‖Φ†Φ‖op = ‖Φ‖2op.

The operator norm allows the following statement

‖(Φstandard −Φradial)x‖`2
‖x‖`2

≤ ‖Φstandard −Φradial‖op ∀x ∈ RN .
(41)

For every input sky model x, the root-mean-squared

(RMS) difference between the model visibilities is
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Figure 2. Plot of the kernels calculated using Equation 32, as a function of upix and w, with vpix = 0, for absolute (left column),
real (middle column), and imaginary (right column) values. Each row has a different field of view, 11.3778◦ × 11.3778◦ (top),
17.0667◦ × 17.0667◦ (middle), and 22.7556◦ × 22.7556◦ (bottom). We see that the kernel spreads as a function of increasing w.
The support size in pixels increases with field of view, due to a large field increasing the sampling rate of the kernel. It is also
clear that the kernel decreases in value with increasing w, faster at wider fields of view. The real and imaginary components
both show oscillations. We find the imaginary component is zero at w = 0 as expected. The values have been calculated using
adaptive quadrature within an absolute error of η = 10−6. There are 100 uniform samples in each of upix and w, making 104

for each plot. The red line shows max(4, 2w/∆u)/2 for reference, which is assumed to be the support size for this work. The
features of this kernel are also consistent with w-projection kernels used by ASKAPSoft (Cornwell et al. 2011).

bounded by the product of the RMS of the input sky

model and the operator norm ‖Φstandard −Φradial‖op.

Additionally, for visibilities y

‖(Φ†standard −Φ†radial)y‖`2
‖y‖`2

≤ ‖Φstandard −Φradial‖op ∀y ∈ RM .
(42)

This statement says that the RMS difference be-

tween dirty maps is bounded by the product of the

RMS of the input visibilities and the operator norm

‖Φstandard −Φradial‖op. When ‖Φstandard −Φradial‖op = 0,

the two operators will clearly be the same.

Since our linear operators map between two Hilbert

spaces, the operator norm of Φ is the square root of

the largest Eigenvalue of Φ†Φ. To calculate the largest

Eigenvalue, we use the power method (as used in Pratley

et al. (2018)).

First we normalize each operator, such that ‖Φ‖ = 1,

so there is no arbitrary scaling. Then we calculate

‖Φstandard−Φradial‖op and ‖Φstandard−Φno−projection‖op.
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Figure 3. Plot of the kernels calculated from Equation 34, as a function of upix and w, with vpix = 0, for absolute (left column),
real (middle column), and imaginary (right column) values. Each row has a different field of view, 11.3778◦ × 11.3778◦ (top),
17.0667◦ × 17.0667◦ (middle), and 22.7556◦ × 22.7556◦ (bottom). We find the same features in Figure 2, showing that it is
consistent with Equation 32. The values have been calculated using adaptive quadrature within an absolute error of η = 10−6.
There are 100 uniform samples in each of upix and w, making 104 for each plot. The red line shows max(4, 2w/∆u)/2 for
reference.

To construct the measurement operators, we use a

variable Gaussian sampling density in (u, v, w), with a

root-mean-squared spread of 100 wavelengths. We scale

w to have an RMS value of 20 wavelengths. We choose

a cell size of 240 arcseconds and an image size of 256 by

256 pixels. This provides a full width field of view of

17.0667◦×17.0667◦. It is important to note that the w-

kernels are a function of the field of view, and not the cell

size. The kernel support size is estimated by the w-value

for each measurement to be min(max(4, 2w/∆u), 40).

This support has a minimum size of 4 and a largest size

of 40, and in between a size of 2w/∆u. The benchmark-

ing was performed on a high performance workstation

comprised of two Intel Xeon Processors (E5-2650Lv3)

with 12 cores each with 2 times hyper-threading per core

(at 1.8 GHz) and 256 Gigabytes of DDR4 RAM (at 2133

MHz).

We found the construction time of a radially symmet-

ric kernel was almost two orders of magnitude faster to

calculate. An absolute difference of 10−4 was used for

quantifying quadrature convergence. The power method

was considered converged with a relative difference of

10−6.

In Figure 5, we show the operator construction time

(excluding the normalization), and the operator norm of

the difference. Each data point was generated by aver-

aging over 5 realizations. The number of measurements

M ranges from only 100 to 1000. From this figure, it is
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Figure 4. The plots above show the number of function evaluations in the quadrature method required to produce Figures 2
(top row) and 3 (bottom row). Each column corresponds to a field of view of 11.3778◦ × 11.3778◦(left), 17.0667◦ × 17.0667◦

(middle), and 22.7556◦ × 22.7556◦ (right). The top row shows two times the values in the bottom row, suggesting that if
Equation 34 takes N evaluations, then Equation 32 takes N2 evaluations to compute. This shows the computation of Equation
34 scales with radius vs. the computation of Equation 32 that scales with area. The number of evaluations required can be
greatly reduced by increasing the absolute error η.

clear that that the operator difference is consistently on

the order of 10−3, suggesting that we have the bounds

of
‖(Φ†

standard−Φ†
radial)y‖`2

‖y‖`2
≤ 10−3, which translates to an

upper bound dirty map RMS difference of the order of

less than 1%. However, the difference will in principle

be less. Similar can be said for generating model visi-

bilities.

It is also clear that the construction times are dramat-

ically different between the two. The construction time

is greatly improved by the threading, since the kernel

construction was performed in parallel. However, due

to the small value of M , this improvement has reached

saturation. It is clear in this example that construction

is hundreds of times faster when using a radial symmet-

ric kernel.

5.4. Imaging of the directionally dependent w-effect via

the zero-spacing

The previous tests have indirectly verified that the

radially symmetric w-projection kernel is consistent with

the 2d w-projection kernel, suggesting that the entire

degridding and gridding process is self consistent. In

this section, we image the generated radially symmetric

kernels directly and compare against the theoretically

expected values that are independent of implementation.

In the image domain, we expect the w-projection ker-

nel to be a chirp with the form of

c(l,m;w) = e−2πiw(
√

1−l2−m2−1) , (43)

then by only imaging the zero-spacing with an arti-

ficial w-component, which can be done by choosing

y(0, 0, w) = 1 and w̄ = 0 in the measurement equation,

we find that the adjoint application of the measurement

operator and then taking the complex conjugate will re-

sult in

ddeexpected(l,m;w) = a(l,m)
c(l,m;w)√
1− l2 −m2

. (44)

It follows that in the discrete setting, gridding a visibility

at (u, v) = (0, 0) and w̄ = 0 will produce the same result

ddecalculated(li,mi;w) =
√
N(Φ†(u=0,v=0,w))

∗
i . (45)

We calculate the average relative difference of dde for

the imaginary and real parts, using the formula

δ(q, p) = 2

[
q − p
|q|+ |p|

]
, (46)

this suppresses divergences for when q or p are close to

zero. We choose a(l,m) = 1, and values of w = 10, 100
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Figure 5. Figures comparing 3 types of measurement oper-
ators. One with a standard 2d w-projection kernel Φstandard,
a radially symmetric kernel Φradial, and one with no w-
projection kernel Φno−projection. The comparisons were per-
formed for 100 to 1000 measurements. (top) The difference
in operator norms. We find that the full 2d and radially
symmetric kernels are bounded to be the same within about
3 × 10−3. We find that assuming no w-projection kernel
produces a difference close to 1. (Bottom) A plot of the
construction time for each operator (excluding normaliza-
tion). We find that using an analytic expression for the
Kaiser-Bessel with no w-projection, Φno−projection, is fastest
for two reasons. These are no quadrature integral to calcu-
late, and minimal amount of coefficients to store into mem-
ory. The quadrature calculation with variable kernel size
means that Φradial will always take more time to calculate,
even for w = 0, which is computationally cheap for quadra-
ture (see Figure 4). We find Φstandard is the most expensive
in time to calculate. This is consistent with the number of
function evaluations required to calculate each coefficient.

wavelengths using an image with 4096 by 4069 pixels and

a pixel height and width of 15 arcseconds. This leads to

a field of view of 17.0667◦×17.0667◦. We compare using

a support size linear in w, 2w
∆u , rounded to the nearest

pixel. We choose an accuracy of 10−6 in absolute and

relative error for numerical quadrature.

Figure 6 and 7 show that the radially symmetric w-

projection kernel has an error on the order of 1% for

both the real and imaginary parts. Where the w-effect

goes through zero in the real and imaginary parts the

average relative difference diverges. It is clear that the

w-projection kernel still matches the expected w-effect,

and that these divergences are due to instabilities of the

average relative difference for values close to zero.

We find that increasing the support size and reducing

the error in numerical quadrature can reduce the aver-

age relative difference. We also find that the support

size 2w
∆u and accuracy of 10−6 in absolute and relative

error for numerical quadrature is sufficient for relative

error on the order of 1%. However, if we do not require

this accuracy, we can reduce the needed computation by

reducing the support size and reducing the accuracy of

the numerical quadrature.

6. DISTRIBUTED W -STACKING W -PROJECTION

HYBRID ALGORITHM

In this section, we provide a brief demonstration of

using radially symmetric w-projection kernels in image

reconstruction. We show for the first time that fast

and accurate kernel construction, in conjunction with

w-stacking, enables the ability for modeling sky curva-

ture and non-coplanar baselines to extremely wide-fields

of view for each visibility. The kernels are calculated

to an absolute accuracy of 10−6, making the kernel ex-

tremely accurate for each w and very wide-fields of view.

We present a hybrid of w-stacking and w-projection al-

gorithm that uses the Message Passing Interface (MPI)

standard and show its application to image reconstruc-

tion of an MWA observation of Puppis A and Vela. This

algorithm is made practical with the developments of the

previous section and the use of distributed computation.

6.1. w-stacking-w-projection measurement operator

First, we distribute the measurements into w-stacks

using MPI. Then, we generate a w-projection kernel for

each visibility in a w-stack.

The measurement operator corrects for the average w-

value in the w-stack, then applies a further correction

to each visibility with the w-projection. Each w-stack

yk has the measurement operator of

Φk = WkGCkFZS̃k . (47)

The gridding correction has been modified to correct for

the w-stack dependent effects, such as the average w̄k
and 1/n(l)

[
S̃k
]
ii

=
ak(li,mi)e

−2πiw̄k(
√

1−l2i−m2
i−1)

g(l2i +m2
i )
√

1− l2i −m2
i

. (48)
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Figure 6. Here we show the calculated radial w-projection chirp in the image domain along with the average relative difference
of the expected and calculated chirp for both the real and imaginary parts. The left column displays the real component of
the chirp, and the right column the imaginary component. The top row is the radial w-projection chirp in the image domain
calculated using ddecalculated with 4096 pixels and a pixel size of 15 arcseconds, calculated for a w = 10 wavelengths using a
kernel support size of 10 by 10 pixels. The bottom row is the average relative difference δ(ddeexpected, ddecalculated). We find
that average relative difference is on the order of 1%, excluding where ddecalculated and ddeexpected are close to zero and the
average relative difference diverges. This shows that the radial symmetric w-projection kernel accurately models the directionally
dependent w-effect at high resolution over wide-fields of view.

We choose no primary beam effects within the stack

ak(li,mi). This gridding correction shifts the relative

w value in the stack. This can reduce the effective w

value in the stack, especially when the stack is close to

the mean w̄k, i.e. to the value of wi − w̄k
5. This re-

duces the size of the support needed in the w-projection

5 Another good choice may be to minimize the median w in a
stack rather than the mean w in a stack.

gridding kernel for each stack,

[GCk]ij = [GC](
√

(ui/∆u− qu,j)2 + (vi/∆u− qv,j)2

, wi − w̄k,∆u) .

(49)

(qu,j , qv,j) represents the nearest grid points. For each

stack yk ∈ CMk we have the measurement equation yk =

Φkx.

To cluster the visibilities into w-stacks, it is ideal to

minimize the kernel sizes across all stacks, minimizing

the memory and computation costs of the kernel. A k-

means clustering can be used, which greatly improves
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Figure 7. As in Figure 6, but for w = 100 wavelengths and using a kernel support size of 118 by 118 pixels. Again we find
that average relative difference is on the order of 1%, demonstrating that even for larger w, the radial symmetric w-projection
kernel accurately models the directionally dependent w-effect at high resolution over wide-fields of view.

performance by reducing the values of |wi− w̄k|2 across

the w-stacks.

It is clear that each stack has an independent measure-

ment equation. However, the full measurement operator

is related to the stacks in the adjoint operators such that

xdirty =
[
Φ†1, . . . , Φ†kmax

]
y1

...

ykmax

 = Φ†y . (50)

When applying the w-stacks in parallel, an MPI all re-

duce can be used to sum over the dirty maps generated

from each node. The full operator Φ can be normalized

using the power method.

6.2. Distributed Image Reconstruction

For image reconstruction, we use alternating direc-

tion method of multipliers as implemented in PURIFY

(ADMM) (Pratley et al. 2018), but built using MPI to

operate on a computing cluster. The algorithm solves

the same minimisation problem stated in Pratley et al.

(2018)

min
x∈RN

∥∥Ψ†x
∥∥
`1

subject to ‖y −Φx‖`2 ≤ ε . (51)

The term
∥∥Ψ†x

∥∥
`1

is a penalty on the number of non-

zero wavelet coefficients, while ‖y −Φx‖`2 ≤ ε is the

condition that the measurements fit within a Gaussian

error bound ε. The wavelet operator Ψ uses a wavelet

dictionary of 9 wavelets, which includes a Dirac basis,

and Debauches 1 to 8. Each basis in the dictionary Ψk

has its own node, and is performed in parallel. Like with

the adjoint measurement operator, an MPI reduction is

performed to sum over the nodes for the forward wavelet
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operator6

x =
[
Ψ1, . . . , Ψ9

]
α1

...

α9

 = Ψα . (52)

6.3. MWA observation of Puppis A and Vela

We use PURIFY (Pratley et al. 2018) and the MPI

w-stacking w-projection hybrid algorithm to reconstruct

an observation of Puppis A performed with the MWA

telescope. The observation is from the Phase 1 config-

uration of the MWA taken on 16 May 2013. The data

was collected with XX and YY linear polarizations and

has been calibrated and flagged following the standard

MWA data reduction process, more details on this pro-

cess be found in Offringa et al. (2014). The observation

is centered at (RA = 08:19:59.99, DEC = -42:45:00),

with a 112 second integration, and a central frequency of

149.115 MHz with a bandwidth of 30.720 MHz. Figure

8 shows a histogram of the visibilities as a function of w,

the w-coverage of the observation ranges between ±600

wavelengths. The observation contains on the order of

17 million visibilities, and the XX and YY correlations

are combined to generate the Stokes I visibilities.

We use a k-means algorithm with MPI to sort and dis-

tribute the visibilities into 50 w-stacks, spread over 25

nodes (2 processes per node, with 1 process per stack),

this sorting took approximately 5 seconds. Most w-

stacks contain w-values between 0 and ±12 wavelengths,

however, some stacks contain w-values of up to 22 wave-

lengths. The reconstructed image was performed over a

25◦ by 25◦ field of view, using 20482 pixels and a pixel

width of 45′′. Generating the radial w-projection kernels

took close to 40 minutes, this generation time can be

changed with more or less w-stacks. Furthermore, the

measurement operator was computed in parallel with

over 25 nodes, and used in combination with sparse

image reconstruction algorithms used in Pratley et al.

(2018). We used the Galaxy Supercomputer (located in

the Pawsey Supercomputing Centre7).

This observation contains the Puppis A and Vela

supernova remnants, a mix of many bright compact

sources and extended structures of the galactic plane.

With PURIFY, we use natural weighting, as it provides

the best performance in modeling both extended and

compact structures. We do not include primary beam

corrections when solving for the reconstructed image.

Figure 9 shows the dirty map, residuals, and the recon-

structed image. As described in Pratley et al. (2018), we

6 We use the convention that x = Ψα and Ψ†x = α.
7 https://www.pawsey.org.au/our-systems/

Figure 8. A histogram of the w-coverage of the imaged data
using 100 bins. The w-values span over ±600 wavelengths.
This w-coverage represents 17,529,644 visibilities after flag-
ging of Radio Frequency Interference (RFI) has been applied.

do not include the restored map, and the reconstructed

image is a sky model that is the equivalent to a CLEAN

component model. We also follow Pratley et al. (2018)

by using the same wavelet dictionary, and scale the ep-

silon by 275 because the weights are relative not abso-

lute. We can correct the scale of flux due to the field

of view by using the Fourier relation F (∆uupix,∆vvpix)

being paired with f(l/∆u,m/∆v)
∆u∆v .

To convert the dirty map and residual map to

Jy/Beam, we image the weights of the visibilities to

obtain the peak pixel value of the point spread func-

tion, the dirty map is then divided by this value to

convert from Jy/Pixel to Jy/Beam. We find that the

residual map has a RMS value of approximately 190

mJy/Beam, with many of the extended structures re-

moved from the residuals. The large scale structures of

Vela are accurately removed, with only a few positive
regions in the residuals where the negative side-lobes

of Vela are located. This shows that the majority of

the large scale structures and more compact detailed

sources such as Puppis A are accurately modeled using

PURIFY over a 25 by 25 degree field of view. The

dynamic range of the reconstruction is 19,850.

7. CONCLUSION

In this work, we investigate exact analytic expressions

for modeling curvature in wide-field interferometry, for

extremely wide-fields of view. This expression has tra-

ditionally been stated in the (l,m, n) domain. However,

this work provides the first exact analytic expression

for sky curvature and horizon seen in wide-field inter-

ferometry in the (u, v, w) domain. Unlike the previous

small field of view approximations, this exact kernel does
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Figure 9. The dirty map (Top Left), residuals (Bottom Left), and sky model reconstruction (Right) of the 112 second MWA
Puppis A observation centered at 149.115 MHz, using 17.5 million visibilities and an image size of 20492 (each pixel is 45
arcseconds and the field of view is approximately 25 by 25 degrees). This image was reconstructed using the MPI distributed
w-stacking-w-projection hybrid algorithm, using the radial symmetric w-projection kernels, in conjunction with the ADMM
algorithm. The RMS of the residuals is 0.189 Jy/Beam, the dynamic range of the reconstruction is 19,850.

not diverge and is continuous. Furthermore, it provides

more insight and understanding of spherical imaging, i.e.

it describes a fundamental resolution limit for the mea-

surement of a visibility from a sphere, and the impact of

the horizon window in the (u, v, w) domain. While this

expression provides insight, the rapid oscillations due

to the spherical sky and large support make calculation

difficult. These insights suggest that exact computation

of projection kernels is more feasible through a Fourier

integral from the (l,m, n) domain.

As described previously, the effect of the w-projection

kernel for non-coplanar baselines (w 6= 0) becomes

greater at larger fields of view. At these extremely wide-

fields of view, construction of a w-projection kernel is

expensive using FFT based methods. Additionally, in

this work, we have found that calculations are extremely

fast and accurate using adaptive quadrature to compute

a radially symmetric gridding kernel. This dramatically

reduces the amount of calculations for a numerically ex-

act kernel calculation, reducing the number of samples

in the 2d case from N2 to N in the radially symmet-

ric case. This immediately makes such a quadrature

method computationally competitive. It has low mem-

ory usage, it can be distributed in parallel, and scales to

extremely wide-fields of view. Furthermore, the calcula-

tion is analytic up to a chosen numerical error, allowing

the tuning of speed vs. accuracy that is not possible

with FFT based methods for large images.

In this work, we developed a new technique to validate

the calculation and application of a DDE. We show that

by applying the modeled DDE when gridding the zero-

spacing, we provided an image of the DDE model where

it can be directly verified. We applied this to the radial

w-projection kernel to show the w-effect corrections to

be accurate on the order of 1%. This accuracy value is

tunable through the support size and the accuracy of

the quadrature integration.

These modeling effects are critical not just for imag-

ing, but calibration of instrumental and ionospheric ef-

fects, where the w-projection can be used to simulate

extremely wide-fields of view. Additionally, any sky

model needs to have wide-field of view effects taken into

account. Such a sky model maybe critical for physical

scientific results. For example, any physical model of the

EoR that is to be compared with data collected from a

wide-field interferometer needs to have wide-field effects

included in the comparison, just as any other instrumen-

tal effect (such as the primary beam). This emphasizes

that while imaging methods are generally not important

for non-imaging experiments, the same process of mod-

eling and correcting for the instrument is still critical in

any other analysis.
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The fast and exact correction via quadrature using a

radially symmetric kernel is new, and makes fast, exact,

spherical and non co-planar baseline corrections possi-

ble with a w-stacking w-projection hybrid. The process

works by first correcting for the average w-value in a

stack to reduce kernel size and total computation, then

correcting the exact difference for each visibility using

quadrature calculated kernels. This method was then

demonstrated on an MWA observation of the Puppis A

and Vela supernova remnants for a 25 by 25 degree field

of view and over 17.5 million measurements.

We have shown that this distributed and paralleled

algorithm is extremely powerful for wide-field imaging.

Furthermore, these algorithms can be accelerated using

multi-threaded parallelism, i.e. General Purpose Graph-

ics Processing Units, in addition to MPI.

With this work, we provide an important step forward

in the fast and accurate evaluation of wide-field interfer-

ometric imaging, bringing us closer to solving the com-

putational challenges of the SKA and thus realizing its

enormous scientific potential.
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