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Cosmology and virtual reality

Whenever observe over angles, recover data on 2D sphere (or 3D rotation group).

Cosmic microwave background 360◦ virtual reality

Construct CNNs natively on the sphere and encode rotational equivariance.
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Generalized spherical CNNs

Consider the s-th layer of a generalized spherical CNN to
take the form of a triple (Cobb et al. 2021)

A(s) = (L1,N ,L2),

such that

A(s)( f(s−1) ) = L2 (N (L1( f(s−1) ) ) ),

where
• L1,L2 : F L → F L are spherical convolution operators,
• N : F L → F L is a non-linear, spherical activation
operator.

Linear

Non-linear

Linear
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Generalised spherical CNNs

• Build on other influential equivariant
spherical CNN constructions:

• Cohen et al. (2018)
• Esteves et al. (2018)
• Kondor et al. (2018)

• Encompass other frameworks as special
cases.

• General framework supports hybrids models.

Existing spherical CNN layers are highly
computationally costly, particularly those
non-linear layers that satisfy strict rotational
equivariance.
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Efficient generalized spherical CNNs



Contributions to improve efficiency

1. Channel-wise structure

2. Constrained generalized convolutions

3. Optimized degree mixing sets

4. Efficient sampling theory on the sphere and rotation group
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Channel-wise structure

Split generalized signals in K channels and apply a tensor-product activation to each
channel separately.

Representational capacity then controlled through linear dependence on channels K,
rather than quadratic dependence (on generalized harmonic representation type τf).

N⊗

`=0 `=1 `=2

Prior approach to applying a tensor-product based non-linear operator

N⊗

`=0, 1, 2

Ours (Cobb et al. 2021)
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Constrained generalized convolutions

Under new multi-channel structure, decompose the generalized convolution into three
separate constrained linear operators:

1. Uniform convolution: linear projection uniformly across channels to project down
onto the desired type (interpreted as learned extension of tensor-product
activations to undo expansion of representation space).

2. Channel-wise convolution: linear combinations of the fragments within each
channel.

3. Cross-channel convolution: linear combinations to learn new features.

Computational and parameter efficiency significantly improved.
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Optimized degree mixing sets

Non-linear operators must perform degree mixing (equivariant linear operators cannot mix
information corresponding to different degrees).

But, it is not necessary to compute all possible tensor-product based fragments.

Degree mixing set Pℓ
L:

Pℓ
L = {(ℓ1, ℓ2) ∈ {0, ..., L− 1}2 : |ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2}.

Consider subsets of Pℓ
L that scale better than O(L2).
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Optimized degree mixing sets

Consider the graph Gℓ
L = (NL,Pℓ

L) with nodes NL = {0, ..., L− 1} and edges Pℓ
L.

• Some notion of relationship between ℓ1 and ℓ2 is captured if there exists a path
between the two nodes in Gℓ

L.
• Select smallest subgraph such that all relationships are preserved ⇒ minimum
spanning tree (MST). Weight edges by computational cost to minimise overall cost.

• Consider logarithmic subsampling (reduced MST).

Computational complexity significantly reduced from O(L5) to O(L3 log L), where L
denotes resolution (bandlimit).

8



Efficient sampling theory and fast harmonic transforms

Adopt efficient sampling theory and fast algorithms to compute harmonic transforms on
the sphere and rotation group.

Leverage to access underlying continuous signal representations, avoiding discretization
artifacts, and compute fast convolutions.

Novel sampling theorem on sphere
(McEwen & Wiaux 2011)

SSHT: Spin spherical harmonic transforms

www.spinsht.org

Novel sampling theorem on rotation group
(McEwen et al. 2015)

SO3: Fast Wigner transforms on rotation group

www.sothree.org
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Numerical results



Computational cost and memory requirements

Computational cost Memory requirements
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Rotational equivariance

Equivariance errors

Layer Mean Relative Error∗

Tensor-product activation → Generalized convolution 5.0× 10−7

S2 ReLU 3.4× 10−1

SO(3) ReLU 3.7× 10−1

∗ Floating point precision.
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3D shape classification: problem

Classify 3D meshes and perform shape retrieval.

[Image credit: Esteves et al. 2018]
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3D shape classification: results

SHREC’17 object retrieval competition metrics (perturbed micro-all)

P@N R@N F1@N mAP NDCG Params

Kondor et al. 2018 0.707 0.722 0.701 0.683 0.756 >1M
Cohen et al. 2018 0.701 0.711 0.699 0.676 0.756 1.4M
Esteves et al. 2018 0.717 0.737 - 0.685 - 500k

Ours 0.719 0.710 0.708 0.679 0.758 250k
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Atomization energy prediction: problem

Predict atomization energy of molecule give the atom charges and positions.
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Atomization energy prediction: results

Test root mean squared (RMS) error for QM7 regression problem

RMS Params

Montavon et al. 2012 5.96 -
Cohen et al. 2018 8.47 1.4M
Kondor et al. 2018 7.97 >1.1M

Ours (MST) 3.16 337k
Ours (RMST) 3.46 335k
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Summary

Efficient generalized spherical CNNs (Cobb et al. 2021; arXiv:2010.11661)

• General framework that encompasses others as special cases.

• Supports hybrid models to leverage strength of alternatives alongside each other.

• New efficient layers that are strictly rotationally equivariant to be used as primary
building blocks.

• State-of-the-art performance, both in terms of accuracy and parameter efficiency.

Code available on request at https://kagenova.com/products/fourpiAI/ or simply contact
jason.mcewen@kagenova.com.
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