Efficient generalized spherical CNNs

arXiv:2010.11661

Oliver Cobb, Chris Wallis, Augustine Mavor-Parker, Augustin Marignier, Matthew Price, Mayeul d'Avezac & Jason D. McEwen*

* Corresponding author: jason.mcewen@kagenova.com, www.jasonmcewen.org

Kagenova Limited

International Conference on Learning Representations (ICLR) 2021

Generalized spherical CNNs

Data on the sphere arises in many applications

Surveillance & Monitoring

Earth & Climate Science

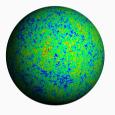
Astrophysics

Medical Imaging

Communications

Cosmology and virtual reality

Whenever observe over angles, recover data on 2D sphere (or 3D rotation group).



Cosmic microwave background

360° virtual reality

Construct CNNs natively on the sphere and encode rotational equivariance.

Generalized spherical CNNs

Consider the s-th layer of a generalized spherical CNN to take the form of a triple (Cobb et al. 2021)

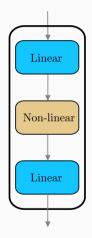
$$\mathcal{A}^{(s)} = (\mathcal{L}_1, \mathcal{N}, \mathcal{L}_2),$$

such that

$$\mathcal{A}^{(s)}(f^{(s-1)}) = \mathcal{L}_2(\mathcal{N}(\mathcal{L}_1(f^{(s-1)}))),$$

where

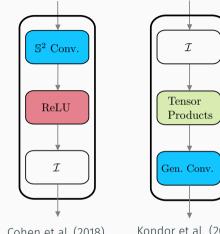
- $\cdot \ \mathcal{L}_1, \mathcal{L}_2 : \mathcal{F}_L \to \mathcal{F}_L$ are spherical convolution operators,
- $\mathcal{N} : \mathcal{F}_L \to \mathcal{F}_L$ is a non-linear, spherical activation operator.



Generalised spherical CNNs

- Build on other **influential equivariant** spherical CNN constructions:
 - Cohen et al. (2018)
 - Esteves et al. (2018)
 - Kondor et al. (2018)
- · Encompass other frameworks as special cases.
- General framework supports hybrids models.

Existing spherical CNN layers are **highly** computationally costly, particularly those non-linear layers that satisfy strict rotational equivariance.



Cohen et al. (2018). Esteves et al. (2018)

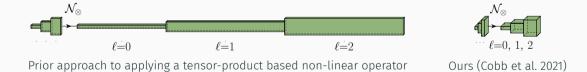
Kondor et al. (2018)

Efficient generalized spherical CNNs

- 1. Channel-wise structure
- 2. Constrained generalized convolutions
- 3. Optimized degree mixing sets
- 4. Efficient sampling theory on the sphere and rotation group

Split generalized signals in *K* **channels** and apply a tensor-product activation to each channel separately.

Representational capacity then controlled through linear dependence on channels K, rather than quadratic dependence (on generalized harmonic representation type τ_f).



Under new multi-channel structure, decompose the generalized convolution into **three separate constrained linear operators**:

- 1. **Uniform convolution**: linear projection uniformly across channels to project down onto the desired type (interpreted as learned extension of tensor-product activations to undo expansion of representation space).
- 2. **Channel-wise convolution**: linear combinations of the fragments within each channel.
- 3. Cross-channel convolution: linear combinations to learn new features.

Computational and parameter efficiency significantly improved.

Non-linear operators must perform degree mixing (equivariant linear operators cannot mix information corresponding to different degrees).

But, it is not necessary to compute all possible tensor-product based fragments.

Degree mixing set \mathbb{P}_{l}^{ℓ} :

$$\mathbb{P}^{\ell}_{L} = \{ (\ell_1, \ell_2) \in \{0, ..., L-1\}^2 : |\ell_1 - \ell_2| \le \ell \le \ell_1 + \ell_2 \}.$$

Consider subsets of \mathbb{P}_{L}^{ℓ} that scale better than $\mathcal{O}(L^{2})$.

Consider the graph $G_L^{\ell} = (\mathbb{N}_L, \mathbb{P}_L^{\ell})$ with nodes $\mathbb{N}_L = \{0, ..., L-1\}$ and edges \mathbb{P}_L^{ℓ} .

- Some notion of relationship between ℓ_1 and ℓ_2 is captured if there exists a path between the two nodes in G_L^{ℓ} .
- Select smallest subgraph such that all relationships are preserved ⇒ minimum spanning tree (MST). Weight edges by computational cost to minimise overall cost.
- Consider logarithmic subsampling (reduced MST).

Computational complexity significantly reduced from $\mathcal{O}(L^5)$ to $\mathcal{O}(L^3 \log L)$, where L denotes resolution (bandlimit).

Efficient sampling theory and fast harmonic transforms

Adopt **efficient sampling theory** and **fast algorithms** to compute harmonic transforms on the sphere and rotation group.

Leverage to access underlying continuous signal representations, avoiding discretization artifacts, and compute fast convolutions.

Novel sampling theorem on sphere (McEwen & Wiaux 2011)

SSHT: Spin spherical harmonic transforms

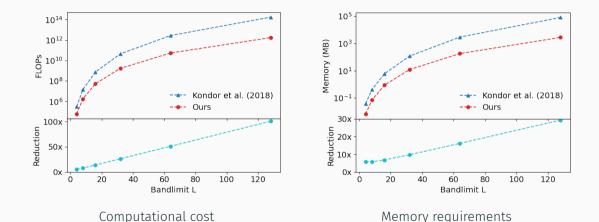
www.spinsht.org

Novel sampling theorem on rotation group (McEwen et al. 2015)

SO3: Fast Wigner transforms on rotation group www.sothree.org

Numerical results

Computational cost and memory requirements



Equivariance errors

Layer	Mean Relative Error*
Tensor-product activation \rightarrow Generalized convolution	5.0×10^{-7}
S ² ReLU	3.4×10^{-1}
SO(3) ReLU	3.7×10^{-1}
* Floating point precision	

* Floating point precision.

3D shape classification: problem

Classify 3D meshes and perform shape retrieval.

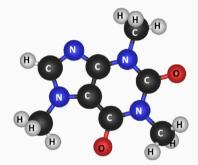
[Image credit: Esteves et al. 2018]

SHREC'17 object retrieval competition metrics (perturbed micro-all)

	P@N	R@N	F1@N	mAP	NDCG	Params
Kondor et al. 2018	0.707	0.722	0.701	0.683	0.756	>1M
Cohen et al. 2018	0.701	0.711	0.699	0.676	0.756	1.4M
Esteves et al. 2018	0.717	0.737	-	0.685	-	500k
Ours	0.719	0.710	0.708	0.679	0.758	250k

Atomization energy prediction: problem

Predict atomization energy of molecule give the atom charges and positions.



Test root mean squared (RMS) error for QM7 regression problem

	RMS	Params
Montavon et al. 2012	5.96	-
Cohen et al. 2018	8.47	1.4M
Kondor et al. 2018	7.97	> 1.1 M
Ours (MST)	3.16	337k
Ours (RMST)	3.46	335k

Efficient generalized spherical CNNs (Cobb et al. 2021; arXiv:2010.11661)

- General framework that encompasses others as special cases.
- Supports hybrid models to leverage strength of alternatives alongside each other.
- New efficient layers that are strictly rotationally equivariant to be used as primary building blocks.
- State-of-the-art performance, both in terms of accuracy and parameter efficiency.

Code available on request at https://kagenova.com/products/fourpiAI/ or simply contact jason.mcewen@kagenova.com.