Radio interferometric imaging with compressive sensing

Jason McEwen www.jasonmcewen.org @jasonmcewen

Mullard Space Science Laboratory (MSSL) University College London (UCL)

In collaboration with Laura Wolz, Filipe Abdalla, Rafael Carrillo & Yves Wiaux

Inverse Problems – from Theory to Application, Bristol, August 2013

Radio telescopes are big!

Jason McEwen

Radio interferometric imaging with compressive sensing

Radio telescopes are big!

Radio interferometric imaging with compressive sensing

Jason McEwen

Radio interferometric telescopes

Jason McEwen Radio interferometric imaging with compressive sensing

Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) first observations planned for 2019.
- Many other pathfinder telescopes under construction, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- Broad range of science goals.
- New modelling and imaging techniques required to ensure the next-generation of interferometric telescopes reach their full potential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) first observations planned for 2019.
- Many other pathfinder telescopes under construction, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- Broad range of science goals.
- New modelling and imaging techniques required to ensure the next-generation of interferometric telescopes reach their full potential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

Jason McEwen

Radio interferometric imaging with compressive sensing

Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) first observations planned for 2019.
- Many other pathfinder telescopes under construction, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- Broad range of science goals.
- New modelling and imaging techniques required to ensure the next-generation of interferometric telescopes reach their full potential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

Outline

2

Interferometric Imaging with Compressive Sensing

イロト イヨト イヨト イヨト

Outline

Interferometric Imaging with Compressive Sensing

Spread Spectrum Effect

Radio interferometric inverse problem

• The complex visibility measured by an interferometer is given by

$$y(\boldsymbol{u}, \boldsymbol{w}) = \int_{D^2} A(\boldsymbol{l}) \, \boldsymbol{x}(\boldsymbol{l}) \, C(\|\boldsymbol{l}\|_2) \, \mathrm{e}^{-\mathrm{i}2\pi\boldsymbol{u}\cdot\boldsymbol{l}} \, \frac{\mathrm{d}^2\boldsymbol{l}}{n(\boldsymbol{l})} \,,$$

visibilities

where the *w*-modulation $C(||l||_2)$ is given by

$$C(\|\boldsymbol{l}\|_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - \|\boldsymbol{l}\|^2}\right)}.$$
w-modulation

• Various assumptions are often made regarding the size of the field-of-view:

Radio interferometric inverse problem

• The complex visibility measured by an interferometer is given by

$$y(\boldsymbol{u}, \boldsymbol{w}) = \int_{D^2} A(\boldsymbol{l}) \, x(\boldsymbol{l}) \, C(||\boldsymbol{l}||_2) \, \mathrm{e}^{-\mathrm{i}2\pi\boldsymbol{u}\cdot\boldsymbol{l}} \, \frac{\mathrm{d}^2\boldsymbol{l}}{n(\boldsymbol{l})}$$

visibilities

where the *w*-modulation $C(||l||_2)$ is given by

$$C(\|\boldsymbol{l}\|_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - \|\boldsymbol{l}\|^2}\right)}.$$
w-modulation

• Various assumptions are often made regarding the size of the field-of-view:

• Small-field with
$$||l||^2 w \ll 1 \Rightarrow C(||l||_2) \simeq 1$$

• Small-field with $||l||^4 w \ll 1 \Rightarrow C(||l||_2) \simeq e^{i\pi w ||l||^2}$
• Wide-field $\Rightarrow C(||l||_2) = e^{i2\pi w (1 - \sqrt{1 - ||l||^2})}$

Radio interferometric inverse problem

• The complex visibility measured by an interferometer is given by

$$y(\boldsymbol{u}, \boldsymbol{w}) = \int_{D^2} A(\boldsymbol{l}) \, x(\boldsymbol{l}) \, C(||\boldsymbol{l}||_2) \, \mathrm{e}^{-\mathrm{i}2\pi\boldsymbol{u}\cdot\boldsymbol{l}} \, \frac{\mathrm{d}^2\boldsymbol{l}}{n(\boldsymbol{l})}$$

visibilities

where the *w*-modulation $C(||l||_2)$ is given by

$$C(\|\boldsymbol{l}\|_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - \|\boldsymbol{l}\|^2}\right)}.$$
w-modulation

• Various assumptions are often made regarding the size of the field-of-view:

• Small-field with
$$||I||^2 w \ll 1 \Rightarrow C(||I||_2) \simeq 1$$

• Small-field with $||I||^4 w \ll 1 \Rightarrow C(||I||_2) \simeq e^{i\pi w ||I||^2}$
• Wide-field $\Rightarrow C(||I||_2) = e^{i2\pi w (1 - \sqrt{1 - ||I||^2})}$

Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n ,$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = MFCA$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

$$y = \Phi x + n ,$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = \mathbf{MFCA}$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

$$y = \Phi x + n \quad ,$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = \mathbf{MFCA}$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

Outline

Inverse Problem

Interferometric Imaging with Compressive Sensing

3 Spread Spectrum Effect

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

$$y = \Phi x + n$$
 with $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$,

by applying a prior on sparsity of the signal in a sparsifying dictionary $\Psi.$

Basis pursuit (BP) denoising problem

where the image is synthesised by $x^{\star} = \Psi \alpha^{\star}$.

Total Variation (TV) denoising problem

$$x^* = \underset{x}{\operatorname{arg\,min}} \|x\|_{\mathrm{TV}} \text{ such that } \|y - \Phi x\|_2 \leq \epsilon \,.$$

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

$$y = \Phi x + n$$
 with $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$,

by applying a prior on sparsity of the signal in a sparsifying dictionary $\Psi.$

• Basis pursuit (BP) denoising problem

$$\boldsymbol{\alpha}^{\star} = \underset{\boldsymbol{\alpha}}{\operatorname{arg\,min}} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon ,$$

where the image is synthesised by $x^{\star} = \Psi \alpha^{\star}$.

Total Variation (TV) denoising problem

$$x^{\star} = \underset{x}{\operatorname{arg\,min}} \|x\|_{\mathrm{TV}} \text{ such that } \|y - \Phi x\|_{2} \leq \epsilon.$$

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

$$y = \Phi x + n$$
 with $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$,

by applying a prior on sparsity of the signal in a sparsifying dictionary $\Psi.$

• Basis pursuit (BP) denoising problem

$$\boldsymbol{\alpha}^{\star} = \underset{\boldsymbol{\alpha}}{\operatorname{arg\,min}} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon ,$$

where the image is synthesised by $x^{\star} = \Psi \alpha^{\star}$.

• Total Variation (TV) denoising problem

$$x^{\star} = \underset{x}{\operatorname{arg\,min}} \|x\|_{\mathrm{TV}} \text{ such that } \|y - \Phi x\|_{2} \leq \epsilon$$

(4回) (三) (三)

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 → concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

$$\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| W \Psi^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \Phi \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 \;,$$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - \Rightarrow concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\bar{x} \in \mathbb{R}^N} \| W \Psi^T \bar{x} \|_1 \quad \text{subject to} \quad \| y - \Phi \bar{x} \|_2 \le \epsilon \quad \text{and} \quad \bar{x} \ge 0 \,,$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - \Rightarrow concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| \boldsymbol{W} \Psi^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \Phi \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 ,$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - \Rightarrow concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

$$\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| \boldsymbol{W} \Psi^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \Phi \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 \,,$$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

SARA for radio interferometric imaging Results on simulations

(a) Original

< 3 >

SARA for radio interferometric imaging Results on simulations

(a) Original

(b) BP (SNR=16.67 dB)

3 × 4 3 ×

SARA for radio interferometric imaging Results on simulations

(a) Original

(b) BP (SNR=16.67 dB)

(c) IUWT (SNR=17.87 dB)

→ E → < E →</p>

Image: A matrix

SARA for radio interferometric imaging Results on simulations

(a) Original

(b) BP (SNR=16.67 dB)

(d) BPDb8 (SNR=24.53 dB)

(e) TV (SNR=26.47 dB)

(c) IUWT (SNR=17.87 dB)

Radio interferometric imaging with compressive sensing

SARA for radio interferometric imaging Results on simulations

Figure: Reconstruction fidelity vs visibility coverage.

Outline

Inverse Problem

Interferometric Imaging with Compressive Sensing

Spread Spectrum Effect

Spread spectrum effect

Preliminaries: sparsity and coherence

- What drives the quality of compressive sensing reconstruction?
- Number of measurements M required to achieve exact reconstruction given by

 $M \ge c\mu^2 K \log N$,

where *K* is the sparsity and *N* the dimensionality.

• Coherence between the measurement vectors and atoms of sparsity dictionary given by

$$\mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j
angle|$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Spread spectrum effect

Preliminaries: sparsity and coherence

- What drives the quality of compressive sensing reconstruction?
- Number of measurements M required to achieve exact reconstruction given by

 $M \ge c\mu^2 K \log N \quad ,$

where K is the sparsity and N the dimensionality.

• Coherence between the measurement vectors and atoms of sparsity dictionary given by

$$\mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j \rangle|$$
.

• • • • • • • •

Spread spectrum effect

Preliminaries: sparsity and coherence

- What drives the quality of compressive sensing reconstruction?
- Number of measurements M required to achieve exact reconstruction given by

 $M \ge c\mu^2 K \log N \quad ,$

where K is the sparsity and N the dimensionality.

• Coherence between the measurement vectors and atoms of sparsity dictionary given by

Spread spectrum effect Review

• Non-coplanar baselines and wide fields \rightarrow *w*-modulation \rightarrow spread spectrum effect (first considered by Wiaux *et al.* 2009b).

• The *w*-modulation operator C has elements defined by

$$C(l,m) \equiv e^{i2\pi w \left(1 - \sqrt{1 - l^2 - m^2}\right)} \simeq e^{i\pi w \|I\|^2} \text{ for } \|I\|^4 w \ll 1$$

giving rise to to a linear chirp.

- Non-coplanar baselines and wide fields \rightarrow *w*-modulation \rightarrow spread spectrum effect (first considered by Wiaux *et al.* 2009b).
- The w-modulation operator C has elements defined by

$$C(l,m) \equiv e^{i2\pi w \left(1 - \sqrt{1 - l^2 - m^2}\right)} \simeq e^{i\pi w \|l\|^2} \text{ for } \|l\|^4 w \ll 1$$

giving rise to to a linear chirp.

(a) Real part

(b) Imaginary part

Figure: Chirp modulation.

Spre	Spread spectrum effect in a nutshell				
	Radio interferometers take (essentially) Fourier measurements.				
	Recall, the coherence is the maximum inner product between measurement vectors and sparsifying atoms.				
	Thus, coherence is (essentially) the maximum of the Fourier coefficients of the atoms of the sparsifying dictionary.				
	<i>w</i> -modulation spreads the spectrum of the atoms of the sparsifying dictionary, reducing the maximum Fourier coefficient.				
6	Spreading the spectrum reduces coherence, thus improving reconstruction fidelity.				

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying *w* (with realistic images and various sparse representations) by Wolz *et al.* (2013).

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying w (with realistic images and various sparse representations) by Wolz et al. (2013).

Spread spectrum effect in a nutshell			
0	Radio interferometers take (essentially) Fourier measurements.		
2	Recall, the coherence is the maximum inner product between measurement vectors and sparsifying atoms.		
	Thus, coherence is (essentially) the maximum of the Fourier coefficients of the atoms of the sparsifying dictionary.		
	<i>w</i> -modulation spreads the spectrum of the atoms of the sparsifying dictionary, reducing the maximum Fourier coefficient.		
	Spreading the spectrum reduces coherence, thus improving reconstruction fidelity.		

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying *w* (with realistic images and various sparse representations) by Wolz *et al.* (2013).

Spr	ead spectrum effect in a nutshell
1	Radio interferometers take (essentially) Fourier measurements.
2	Recall, the coherence is the maximum inner product between measurement vectors and sparsifying atoms.
3	Thus, coherence is (essentially) the maximum of the Fourier coefficients of the atoms of the sparsifying dictionary.
	<i>w</i> -modulation spreads the spectrum of the atoms of the sparsifying dictionary, reducing the maximum Fourier coefficient.
6	Spreading the spectrum reduces coherence, thus improving reconstruction fidelity.

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying w (with realistic images and various sparse representations) by Wolz et al. (2013).

Spread spe	ectrum effect in a nutshell
Radio	interferometers take (essentially) Fourier measurements.
Recall measure	I, the coherence is the maximum inner product between urement vectors and sparsifying atoms.
Thus, the ato	coherence is (essentially) the maximum of the Fourier coefficients of oms of the sparsifying dictionary.
W-moc diction	dulation spreads the spectrum of the atoms of the sparsifying nary, reducing the maximum Fourier coefficient.
Sprea reconst	iding the spectrum reduces coherence, thus improving struction fidelity.

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying w (with realistic images and various sparse representations) by Wolz et al. (2013).

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying w (with realistic images and various sparse representations) by Wolz et al. (2013).

• Consistent with findings of Carozzi et al. (2013) from information theoretic approach.

- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying w (with realistic images and various sparse representations) by Wolz et al. (2013).

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying *w* (with realistic images and various sparse representations) by Wolz *et al.* (2013).

• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \mathbf{F} \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different w for each (u, v), while still exploiting FFT.
- Many of the elements of $\hat{\mathbf{C}}$ will be close to zero.
- Support of *w*-modulation in Fourier space determined dynamically.

• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \mathbf{F} \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different w for each (u, v), while still exploiting FFT.
- Many of the elements of \hat{C} will be close to zero.
- Support of *w*-modulation in Fourier space determined dynamically.

• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \, \mathbf{F} \, \mathbf{C} \, \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \, \mathbf{F} \, \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different w for each (u, v), while still exploiting FFT.
- Many of the elements of C will be close to zero.
- Support of *w*-modulation in Fourier space determined dynamically.

• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \, \mathbf{F} \, \mathbf{C} \, \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \, \mathbf{F} \, \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different w for each (u, v), while still exploiting FFT.
- Many of the elements of C will be close to zero.
- Support of *w*-modulation in Fourier space determined dynamically.

• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \, \mathbf{F} \, \mathbf{C} \, \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \, \mathbf{F} \, \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different w for each (u, v), while still exploiting FFT.
- Many of the elements of $\hat{\mathbf{C}}$ will be close to zero.
- Support of w-modulation in Fourier space determined dynamically.

Spread spectrum effect for varying *w* Results on simulations

- Perform simulations to assess the effectiveness of the spread spectrum effect in the presence of varying *w*.
- Consider idealised simulations with uniformly random visibility sampling.

Figure: Ground truth images in logarithmic scale.

Spread spectrum effect for varying *w* Results on simulations

(a) $w_d = 0 \rightarrow SNR = 5 dB$

Figure: Reconstructed images of M31 for 10% coverage.

イロト イヨト イヨト イヨト

Spread spectrum effect for varying *w* Results on simulations

(a) $w_d = 0 \rightarrow SNR = 5 dB$

(c) $w_d = 1 \rightarrow SNR = 19 dB$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Figure: Reconstructed images of M31 for 10% coverage.

Spread spectrum effect for varying *w* Results on simulations

Figure: Reconstructed images of M31 for 10% coverage.

・ロト ・回ト ・ヨト ・ヨト

Spread spectrum effect for varying *w* Results on simulations

(a) $w_d = 0 \rightarrow SNR = 2dB$

Figure: Reconstructed images of 30Dor for 10% coverage.

イロト イヨト イヨト イヨト

Spread spectrum effect for varying *w* Results on simulations

(a) $w_d = 0 \rightarrow SNR = 2dB$

(c) $w_d = 1 \rightarrow SNR = 15 dB$

・ロト ・回ト ・ヨト ・ヨト

Figure: Reconstructed images of 30Dor for 10% coverage.

Spread spectrum effect for varying *w* Results on simulations

(a) $w_d = 0 \rightarrow SNR = 2dB$

(b) $w_d \sim \mathcal{U}(0, 1) \rightarrow SNR = 12 dB$

(c) $w_d = 1 \rightarrow SNR = 15 dB$

・ロト ・回ト ・ヨト ・ヨト

Figure: Reconstructed images of 30Dor for 10% coverage.

Spread spectrum effect for varying *w* Results on simulations

Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for varying *w* is almost as large as the case of constant maximum *w*!

• As expected, for the case where coherence is already optimal, there is little improvement.

Spread spectrum effect for varying *w* Results on simulations

Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.

Spread spectrum effect for varying w Results on simulations

Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w!

 As expected, for the case where coherence is already optimal, there is little improvement.

Spread spectrum effect for varying *w* Results on simulations

Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.

Spread spectrum effect for varying *w* Results on simulations

Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.

Outline

Inverse Problem

Interferometric Imaging with Compressive Sensing

Spread Spectrum Effect

Continuous Visibilities

・ロト ・回ト ・ヨト ・ヨト

Supporting continuous visibilities Algorithm

Ideally we would like to model the continuous Fourier transform operator

$$\Phi = \mathbf{F}^{\mathbf{c}} .$$

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2013).
- Model with measurement operator

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z},$$

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator **D** to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space.

Supporting continuous visibilities Algorithm

Ideally we would like to model the continuous Fourier transform operator

$$\Phi = \mathbf{F}^{\mathsf{c}} .$$

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2013).
- Model with measurement operator

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z},$$

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space.

Supporting continuous visibilities Algorithm

Ideally we would like to model the continuous Fourier transform operator

$$\Phi = \mathbf{F}^{\mathsf{c}} .$$

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2013).
- Model with measurement operator

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z} ,$$

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space.

• • • • • • • •

(b) M31 (ground truth)

Figure: Reconstructed images from continuous visibilities.

(b) M31 (ground truth)

(c) Dirac basis \rightarrow SNR= 8.2dB

Figure: Reconstructed images from continuous visibilities.

(a) Coverage

(b) M31 (ground truth)

(d) Db8 wavelets \rightarrow SNR= 11.1dB

Figure: Reconstructed images from continuous visibilities.

(a) Coverage

(b) M31 (ground truth)

(c) Dirac basis \rightarrow SNR= 8.2dB

(d) Db8 wavelets \rightarrow SNR= 11.1dB

Figure: Reconstructed images from continuous visibilities.

Jason McEwen	R
--------------	---

adio interferometric imaging with compressive sensing

Conclusions & outlook

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can guide telescope design.
- We have just released the PURIFY code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Application of (unconstrained) BPDN to LOFAR by Garsden et al. 2014.

Apply to observations made by real interferometric telescopes.

Conclusions & outlook

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can guide telescope design.
- We have just released the PURIFY code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Application of (unconstrained) BPDN to LOFAR by Garsden et al. 2014.

Apply to observations made by real interferometric telescopes.

Conclusions & outlook

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can guide telescope design.
- We have just released the PURIFY code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Application of (unconstrained) BPDN to LOFAR by Garsden et al. 2014.

Apply to observations made by real interferometric telescopes.

PURIFY code

http://basp-group.github.io/purify/

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

Conclusions & outlook

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can guide telescope design.
- We have just released the PURIFY code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Application of (unconstrained) BPDN to LOFAR by Garsden et al. 2014.

Apply to observations made by real interferometric telescopes.

PURIFY code

http://basp-group.github.io/purify/

(日)

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

Extra Slides

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sparse *w*-projection Sparsity of *w*-modulation kernel in Fourier space

Figure: Rows of Fourier representation of *w*-modulation operator \hat{C} .

Sparse *w*-projection Dynamic sparsification

- We make a sparse matrix approximation of $\hat{\mathbf{C}}$ to speed up its computational application and reduce memory requirements.
- Sparsify $\hat{\mathbf{C}}$ by dynamic thresholding.
- Retain *E*% of the energy content for each visibility measurement.
- Support of *w*-modulation kernel in Fourier space determined dynamically, so don't require any prior information about structure.
- Generic procedure applicable for any direction-dependent effect (DDE).

Sparse *w*-projection Dynamic sparsification

- We make a sparse matrix approximation of $\hat{\mathbf{C}}$ to speed up its computational application and reduce memory requirements.
- Sparsify $\hat{\mathbf{C}}$ by dynamic thresholding.
- Retain E% of the energy content for each visibility measurement.
- Support of *w*-modulation kernel in Fourier space determined dynamically, so don't require any prior information about structure.
- Generic procedure applicable for any direction-dependent effect (DDE).

Sparse *w*-projection Dynamic sparsification

- We make a sparse matrix approximation of $\hat{\mathbf{C}}$ to speed up its computational application and reduce memory requirements.
- Sparsify $\hat{\mathbf{C}}$ by dynamic thresholding.
- Retain *E*% of the energy content for each visibility measurement.
- Support of *w*-modulation kernel in Fourier space determined dynamically, so don't require any prior information about structure.
- Generic procedure applicable for any direction-dependent effect (DDE).

nverse Problem Imaging Spread Spectrum Continuous Visibilities

Sparse *w*-projection Sparsified *w*-modulation kernels

$$w_{\rm d} = 0.1$$

$$w_{\rm d} = 0.5$$

ヨト くヨト

 $w_{\rm d} = 1.0$

$$E = 0.25$$
 $E = 0.50$ $E = 0.75$ E

Figure: w-modulation kernel.

Jason McEwen

Radio interferometric imaging with compressive sensing

nverse Problem Imaging Spread Spectrum Continuous Visibilities

Sparse *w*-projection Sparsified *w*-modulation kernels

$$w_d = 0.1$$

 $w_d = 0.5$
 $w_d = 1.0$
 $E = 0.25$
 $E = 0.50$
 $E = 0.75$
 $E = 1.00$

Figure: w-modulation kernel.

Radio interferometric imaging with compressive sensing

・ロト ・回ト ・ヨト ・ヨト

æ

Sparse *w*-projection Sparsified *w*-modulation kernels

$$w_{d} = 0.1$$

$$w_{d} = 0.5$$

$$w_{d} = 1.0$$

$$E = 0.25$$

$$E = 0.50$$

$$E = 0.75$$

$$E = 1.00$$
Figure: w-modulation kernel.

Jason McEwen

Radio interferometric imaging with compressive sensing

E

nverse Problem Imaging Spread Spectrum Continuous Visibilities

Sparse *w*-projection Sparsified *w*-modulation kernels

Figure: w-modulation kernel.

<ロト (四) (注) (日)

Sparse *w*-projection Proportion of non-zero entries

Figure: Percentage of non-zero entries as a function of preserved energy proportion.

Sparse *w*-projection Runtime improvements

Figure: Relative runtime as a function of preserved energy proportion for 10% (dashed) and 50% (solid) visibility coverages.

Sparse *w*-projection Impact on reconstruction quality

Figure: Reconstruction quality as a function of preserved energy proportion for 10% (dashed) and 50% (solid) visibility coverages.

